ideally Ca ( Al 0 . 5 Ta 0 . 5 ) ( SiO 4 ) O , a new mineral of the titanite group from the Pi ł awa Górna pegmatite , the Góry Sowie Block , southwestern Poland

Żabin ́skiite, ideally Ca(Al0.5Ta0.5)(SiO4)O, was found in a Variscan granitic pegmatite at Piława Górna, Lower Silesia, SW Poland. The mineral occurs along with (Al,Ta,Nb)and (Al,F)-bearing titanites, a pyrochlore-supergroup mineral and a K-mica in compositionally inhomogeneous aggregates, ∼120 μm × 70 μm in size, in a fractured crystal of zircon intergrown with polycrase-(Y) and euxenite-(Y). Żabin ́skiite is transparent, brittle, brownish, with a white streak, vitreous lustre and aMohs hardness of∼5. The calculated density for the refined crystal is equal to 3.897 g cm, but depends strongly on composition. The mineral is non-pleochroic, biaxial (–), with mean refractive indices≥1.89. The (Al,Ta,Nb)-richest żabin ́skiite crystal, (Ca0.980Na0.015)Σ=0.995(Al0.340Fe 3þ 0:029Ti0.298V0.001Zr0.001Sn0.005Ta0.251Nb0.081)Σ=1.005[(Si0.988Al0.012)O4.946 F0.047(OH)0.007)Σ=5.000]; 60.7 mol.% Ca[Al0.5(Ta,Nb)0.5](SiO4)O; is close in composition to previously described synthetic material. Żabin ́skiite is triclinic (space group symmetry A 1) and has unit-cell parameters a = 7.031(2) Å, b = 8.692(2) Å, c = 6.561(2) Å, α = 89.712(11)°, β = 113.830(13)°, γ = 90.352(12)° and V = 366.77 (11) Å. It is isostructural with triclinic titanite and bond-topologically identical with titanite and other minerals of the titanite group. Żabin ́skiite crystallized along with (Al,Ta,Nb)-bearing titanites at increasing Ti and Nb, and decreasing Ta activities, almost coevally with polycrase-(Y) and euxenite-(Y) from Ca-contaminated fluxed melts or early hydrothermal fluids.

[1]  E. Makovicky,et al.  Bohseite, ideally Ca4Be4Si9O24(OH)4, from the Piława Górna quarry, the Góry Sowie Block, SW Poland , 2017, Mineralogical Magazine.

[2]  B. Gołębiowska,et al.  Cs-bearing Beryl Evolving To Pezzottaite from the Julianna Pegmatitic System, Sw Poland , 2016 .

[3]  A. Pieczka,et al.  Pilawite-(Y), Ca2(Y,Yb)2[Al4(SiO4)4O2(OH)2], a new mineral from the Piława Górna granitic pegmatite, southwestern Poland: mineralogical data, crystal structure and association , 2015, Mineralogical Magazine.

[4]  A. Pieczka,et al.  Granitic pegmatites of the Polish part of the Sudetes (NE Bohemian massif, SW Poland) , 2015 .

[5]  A. Pieczka,et al.  SAMARSKITE-GROUP MINERALS AND ALTERATION PRODUCTS: AN EXAMPLE FROM THE JULIANNA PEGMATITIC SYSTEM, PIŁAWA GÓRNA, SW POLAND , 2014 .

[6]  B. Mihailova,et al.  TEMPERATURE-INDUCED P21/c TO C2/c PHASE TRANSITION IN PARTIALLY AMORPHOUS (METAMICT) TITANITE REVEALED BY RAMAN SPECTROSCOPY , 2014 .

[7]  A. Pieczka,et al.  The Julianna pegmatite vein system at the Piława Górna Mine, Góry Sowie Block, SW Poland – preliminary data on geology and descriptive mineralogy , 2013 .

[8]  A. Pieczka,et al.  (Fe,Mn)-(Ti,Sn)-(Nb,Ta) oxide assemblage in a little fractionated portion of a mixed (NYF + LCT) pegmatite from Piława Górna, the Sowie Mts. block, SW Poland , 2013 .

[9]  J. Sejkora,et al.  Unusual mineralization with niobian titanite and Bi-tellurides in scheelite skarn from Kamenne doly quarry near Pisek, Moldanubian Zone, Bohemian Massif , 2012 .

[10]  F. Hawthorne,et al.  Natrotitanite, ideally (Na0.5Y0.5)Ti(SiO4)O, a new mineral from the Verkhnee Espe deposit, Akjailyautas mountains, Eastern Kazakhstan district, Kazakhstan: description and crystal structure , 2012, Mineralogical Magazine.

[11]  D. Cherniak,et al.  Diffusion in Minerals: An Overview of Published Experimental Diffusion Data , 2010 .

[12]  F. Hawthorne,et al.  Triclinic titanite from the Heftetjern granitic pegmatite, Tørdal, southern Norway , 2009, Mineralogical Magazine.

[13]  M. Novák,et al.  Complexly zoned niobian titanite from hedenbergite skarn at Písek, Czech Republic, constrained by substitutions Al(Nb,Ta)Ti–2, Al(F,OH)(TiO)–1 and SnTi–1 , 2008, Mineralogical Magazine.

[14]  F. Hatert,et al.  THE IMA–CNMNC DOMINANT-CONSTITUENT RULE REVISITED AND EXTENDED , 2008 .

[15]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[16]  G. Rossman,et al.  Barioperovskite, BaTiO3, a new mineral from the Benitoite Mine, California , 2008 .

[17]  R. Kryza,et al.  Devonian deep-crustal metamorphism and exhumation in the Variscan Orogen: evidence from SHRIMP zircon ages from the HT-HP granulites and migmatites of the Góry Sowie (Polish Sudetes) , 2007 .

[18]  R. Mitchell,et al.  Tantalum-bearing titanite: synthesis and crystal structure data , 2006 .

[19]  R. Mitchell,et al.  Crystal structure of a synthetic aluminoan tantalian titanite: a reconnaissance study , 2006, Mineralogical Magazine.

[20]  R. Kryza,et al.  The Variscan Orogen in Poland , 2006 .

[21]  D. Schneider,et al.  Exhumation and metamorphism of an ultrahigh-grade terrane: geochronometric investigations of the Sudete Mountains (Bohemia), Poland and Czech Republic , 2005, Journal of the Geological Society.

[22]  J. Blusztajn,et al.  Trace element and Sm-Nd `age' zoning in garnets from peridotites of the Caledonian and Variscan Mountains and tectonic implications , 2004 .

[23]  A. Chakhmouradian Crystal chemistry and paragenesis of compositionally unique (Al-, Fe-, Nb-, and Zr-rich) titanite from Afrikanda, Russia , 2004 .

[24]  M. Kunz,et al.  Pressure-induced phase transition in malayaite , CaSnOSiO , 2003 .

[25]  A. Chakhmouradian,et al.  Titanite in carbonatitic rocks: Genetic dualism and geochemical significance , 2003 .

[26]  M. Tiepolo,et al.  Trace-element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients , 2002 .

[27]  D. Bowes,et al.  U–Pb zircon isotopic evidence for mid-Devonian migmatite formation in the Góry Sowie domain of the Bohemian Massif, Sudeten Mountains, SW Poland , 2002 .

[28]  R. Kryza,et al.  New U–Pb monazite and zircon data from the Sudetes Mountains in SW Poland: evidence for a single‐cycle Variscan orogeny , 2000, Journal of the Geological Society.

[29]  F. Bellatreccia,et al.  Zr- and LREE-rich titanite from Tre Croci, Vico Volcanic complex (Latium, Italy) , 1999, Mineralogical Magazine.

[30]  S. Piazolo,et al.  Stability of high-Al titanite from low-pressure calcsilicates in light of fluid and host-rock composition , 1999 .

[31]  M. Bröcker,et al.  Rb–Sr and U–Pb geochronology of migmatitic gneisses from the Góry Sowie (West Sudetes, Poland): the importance of Mid–Late Devonian metamorphism , 1998, Journal of the Geological Society.

[32]  P. Černý,et al.  Evolution of Nb,Ta-oxide minerals in the Prasiva granitic pegmatites, Slovakia; II, External hydrothermal Pb,Sb overprint , 1998 .

[33]  P. Jaeckel,et al.  Petrological and Isotopic Studies on Palaeozoic High-pressure Granulites, Gory Sowie Mts, Polish Sudetes , 1997 .

[34]  U. Bismayer,et al.  The two-step phase transition of titanite, CaTiSiO5: a Synchrotron radiation study , 1997, Zeitschrift für Kristallographie - Crystalline Materials.

[35]  E. Salje,et al.  Phase transformation of natural titanite : An infrared, Raman spectroscopic, optical birefringence and X-ray diffraction study , 1996 .

[36]  M. Novák,et al.  The Al (Nb, Ta) Ti(in−2) substitution in titanite: the emergence of a new species? , 1995 .

[37]  E. Salje,et al.  Phase transition(s) in titanite CaTiSiO5: An infrared spectroscopic, dielectric response and heat capacity study , 1995 .

[38]  J. K. Russell,et al.  LREE-rich niobian titanite from Mount Bisson, British Columbia; chemistry and exchange mechanisms , 1994 .

[39]  A. Palenzona,et al.  Vanadomalayaite, CaVOSiO4, a new mineral vanadium analog of titanite and malayaite Locality: Gambatesa mine, Reppia, Val Graveglia, Northern Appenines, Italy , 1994 .

[40]  N. Eby,et al.  Niobian Titanite and Eudialyte from the Ilomba Nepheline Syenite Complex, North Malawi , 1992 .

[41]  U. Bismayer,et al.  Linear birefringence and X-Ray diffraction studies of the structural phase transition in titanite, CaTiSiO5 , 1992 .

[42]  J. Birch,et al.  EXCALIBR II , 1992 .

[43]  O. V. Breemen,et al.  Devonian tectonothermal activity in the Sowie Góry gneissic block, Sudetes, southwestern Poland: evidence from Rb-Sr and U-Pb isotopic studies , 1988 .

[44]  G. Franz,et al.  CRVSTAL CHEMISTRY AND GENESIS OF Nb., V., AND AI-RICH METAMORPHIC TITANITE FROM EGYPT AND GREECE , 1987 .

[45]  F. Hawthorne,et al.  Tantalian niobian titanite from the Irgon claim, southeastern Manitoba , 1985 .

[46]  B. Chappell,et al.  Light-rare-earth-element zoning in sphene and allanite during granitoid fractionation , 1984 .

[47]  F. Forr,et al.  The crystal structure of an Al-rich titanite from Grisons. Switzerland , 1984 .

[48]  B. Paul,et al.  NIOBIAN TITANITE FROM THE HURON CLAIM PEGMATITE, SOUTHEASTERN MANITOBA* , 1981 .

[49]  J. B. Higgins,et al.  The structure of malayaite, CaSnOSiO 4 , a tin analog of titanite , 1977 .

[50]  J. B. Higgins,et al.  The crystal chemistry and space groups of natural and synthetic titanites , 1976 .

[51]  G. Brown,et al.  High-temperature structural study of the P2 1 /a A2/a phase transition in synthetic titanite, CaTiSiO 5 , 1976 .

[52]  G. V. Gibbs,et al.  The crystal structure of synthetic titanite, CaTiOSiO 4 , and the domain textures of natural titanites , 1976 .

[53]  A. Clark A tantalum-rich variety of sphene , 1974, Mineralogical Magazine.

[54]  P. Henderson Mineral Chemistry , 1970, Nature.

[55]  R. Mason,et al.  Crystal Chemistry , 2006 .

[56]  J. B. Alexander A Note on Varlamoffite and Associated Minerals from the Batang Padang District, Perak, Malaya, Malaysia1 , 1965 .

[57]  R. O. Scott On the chemistry of the mineral titanite : Sahama, Th.G.: C. r. Soc. géol. Finlande No. 19; Bull. Comm. géol. Finlande No. 138, 88–120 (1946) , 1948 .

[58]  G. T. Prior On Strüverite and Its Relation to Ilmenorutile , 1908 .