A Directional Rouy-Tourin Scheme for Adaptive Matrix-Valued Morphology

In order to describe anisotropy in image processing models or physical measurements, matrix fields are a suitable choice. In diffusion tensor magnetic resonance imaging (DT-MRI), for example, information about the diffusive properties of water molecules is captured in symmetric positive definite matrices. The corresponding matrix field reflects the structure of the tissue under examination. Recently, morphological partial differential equations (PDEs) for dilation and erosion known for grey scale images have been extended to matrix-valued data. In this article we consider an adaptive, PDE-driven dilation process for matrix fields. The anisotropic morphological evolution is steered with a matrix constructed from a structure tensor for matrix valued data. An important novel ingredient is a directional variant of the matrix-valued Rouy-Tourin scheme that enables our method to complete or enhance anisotropic structures effectively. Experiments with synthetic and real-world data substantiate the gap-closing and line-completing properties of the proposed method.

[1]  Universitdes Saarlandes,et al.  Curvature-Driven PDE Methods for Matrix-Valued Images , 2004 .

[2]  Michael Breuß,et al.  A Shock-Capturing Algorithm for the Differential Equations of Dilation and Erosion , 2006, Journal of Mathematical Imaging and Vision.

[3]  Petros Maragos,et al.  Evolution equations for continuous-scale morphological filtering , 1994, IEEE Trans. Signal Process..

[4]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[5]  Thomas Brox,et al.  Nonlinear structure tensors , 2006, Image Vis. Comput..

[6]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[7]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[8]  Joachim Weickert,et al.  Morphology for matrix data: Ordering versus PDE-based approach , 2007, Image Vis. Comput..

[9]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[10]  Silvano Di Zenzo,et al.  A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..

[11]  Jesús Angulo,et al.  Spatially-Variant Directional Mathematical Morphology Operators Based on a Diffused Average Squared Gradient Field , 2008, ACIVS.

[12]  Werner Nagel Image Analysis and Mathematical Morphology. Volume 2: Theoretical Advances. Edited by Jean Serra , 1870 .

[13]  G. Matheron Random Sets and Integral Geometry , 1976 .

[14]  Josef Bigün Vision with direction - a systematic introduction to image processing and computer vision , 2006 .

[15]  Michael Breuß,et al.  Anisotropic Continuous-Scale Morphology , 2007, IbPRIA.

[16]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[17]  G. Matheron Éléments pour une théorie des milieux poreux , 1967 .

[18]  Guillermo Sapiro,et al.  Implementing continuous-scale morphology via curve evolution , 1993, Pattern Recognit..

[19]  Johan Wiklund,et al.  Multidimensional Orientation Estimation with Applications to Texture Analysis and Optical Flow , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Pierre Soille,et al.  Morphological Image Analysis , 1999 .

[21]  Joachim Weickert,et al.  A general structure tensor concept and coherence-enhancing diffusion filtering for matrix fields , 2009 .

[22]  Luc Florack,et al.  A generic approach to diffusion filtering of matrix-fields , 2007, Computing.

[23]  Luc Vincent,et al.  Mathematical morphology: The Hamilton-Jacobi connection , 1993, 1993 (4th) International Conference on Computer Vision.

[24]  Michael Breuß,et al.  PDE-Driven Adaptive Morphology for Matrix Fields , 2009, SSVM.