Replacement of Vanadium by Ferrovanadium in a Ti-Based Body Centred Cubic (BCC) Alloy: Towards a Low-Cost Hydrogen Storage Material

[1]  J. Charbonnier,et al.  Hydrogen sorption properties of compounds based on BCC Ti1 − xV1 − yCr1 + x + y alloys , 2012 .

[2]  R. Dittmeyer,et al.  Cost reduction possibilities of vanadium-based solid solutions – Microstructural, thermodynamic, cyclic and environmental effects of ferrovanadium substitution , 2015 .

[3]  E. Akiba,et al.  Isotope effect on structural transitions of Ti1.0Mn0.9V1.1HX(DX) and Ti1.0Cr1.5V1.7HX(DX) with hydrogenation , 2001 .

[4]  E. Akiba,et al.  Metallic Hydrides III: Body-Centered- Cubic Solid- Solution Alloys , 2002 .

[5]  Chaoling Wu,et al.  Preparation of (FeV80)48Ti26+xCr26(x=0–4) alloys by the hydride sintering method and their hydrogen storage performance , 2017 .

[6]  Yigang Yan,et al.  A low-cost BCC alloy prepared from a FeV80 alloy with a high hydrogen storage capacity , 2007 .

[7]  E. Akiba Hydrogen Absorption by Laves Phase Related BCC Solid Solution Alloys , 1997 .

[8]  H. Taizhong,et al.  Dependence of hydrogen storage capacity of TiCr1.8−X(VFe)X on V–Fe content , 2004 .

[9]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[10]  S. F. Santos,et al.  Hydrogen storage in Ti–Mn–(FeV) BCC alloys , 2009 .

[11]  Masuo Okada,et al.  Ti-V-Cr b.c.c. alloys with high protium content , 2002 .

[12]  M. Ishikiriyama,et al.  Improvement of cyclic durability of Ti–Cr–V alloy by Fe substitution , 2011 .

[13]  Naixin Xu,et al.  TiCr1.2(V–Fe)0.6—a novel hydrogen storage alloy with high capacity , 2003 .

[14]  Shumao Wang,et al.  Enhancement of cerium and hydrogen storage property of a low-cost Ti-V based BCC alloy prepared by commercial ferrovanadium , 2010 .

[15]  Yumiko Nakamura,et al.  New hydride phase with a deformed FCC structure in the Ti–V–Mn solid solution–hydrogen system , 2000 .

[16]  J. Huot,et al.  Replacement of Vanadium by Ferrovanadium in Ti-Based BCC Alloys for Hydrogen Storage , 2011 .

[17]  Yumiko Nakamura,et al.  Development of Ti–Zr–Mn Based Hydrogen Storage Alloys for a Soft Actuator , 2014 .

[18]  Thomas Bibienne,et al.  Crystal structure and hydrogen storage properties of body centered cubic 52Ti–12V–36Cr alloy doped with Zr7Ni10 , 2014 .

[19]  H. Taizhong,et al.  Effect of stoichiometry on hydrogen storage performance of Ti–Cr–VFe based alloys , 2005 .

[20]  Thomas Bibienne,et al.  Synthesis, characterization and hydrogen sorption properties of a Body Centered Cubic 42Ti–21V–37Cr alloy doped with Zr7Ni10 , 2015 .

[21]  E. Akiba,et al.  H2 Absorbing-desorbing characterization of the TiVFe alloy system , 1995 .

[22]  S. F. Santos,et al.  Hydrogen storage in TiCr1.2(FeV)x BCC solid solutions , 2009 .

[23]  Yong‐Mook Kang,et al.  Effect of heat treatment on microstructure and hydrogen storage properties of mass-produced Ti0.85Zr0.13(Fex–V)0.56Mn1.47Ni0.05 alloy , 2013 .

[24]  Shumao Wang,et al.  Effect of Al on microstructures and hydrogen storage properties of Ti26.5Cr20(V0.45Fe0.085)100−xAlxCe0.5 alloy , 2009 .