Sufficiency and Duality in Multiobjective Programming with Generalized (F, ρ)-Convexity

Abstract A multiobjective nonlinear programming problem is considered. Sufficiency theorems are derived for efficient and properly efficient solutions under generalized (F, ρ)-convexity assumptions. Weak, strong and strict converse duality theorems are established for a general Mond–Weir type dual relating properly efficient solutions of the primal and dual problems.