ELASTIC IMAGE REGISTRATION USING PARAMETRIC DEFORMATION MODELS

The main topic of this thesis is elastic image registration for biomedical applications. We start with an overview and classification of existing registration techniques. We revisit the landmark interpolation which appears in the landmark-based registration techniques and add some generalizations. We develop a general elastic image registration algorithm. It uses a grid of uniform B-splines to describe the deformation. It also uses B-splines for image interpolation. Multiresolution in both image and deformation model spaces yields robustness and speed. First we describe a version of this algorithm targeted at finding unidirectional deformation in EPI magnetic resonance images. Then we present the enhanced and generalized version of this algorithm which is significantly faster and capable of treating multidimensional deformations. We apply this algorithm to the registration of SPECT data and to the motion estimation in ultrasound image sequences. A semi-automatic version of the registration algorithm is capable of accepting expert hints in the form of soft landmark constraints. Much fewer landmarks are needed and the results are far superior compared to pure landmark registration. In the second part of this thesis, we deal with the problem of generalized sampling and variational reconstruction. We explain how to reconstruct an object starting from several measurements using arbitrary linear operators. This comprises the case of traditional as well as generalized sampling. Among all possible reconstructions, we choose the one minimizing an a priori given quadratic variational criterion. We give an overview of the method and present several examples of applications. We also provide the mathematical details of the theory and discuss the choice of the variational criterion to be used.

[1]  Michael Unser,et al.  The L2-Polynomial Spline Pyramid , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  J. Michael Fitzpatrick,et al.  A technique for accurate magnetic resonance imaging in the presence of field inhomogeneities , 1992, IEEE Trans. Medical Imaging.

[3]  Scott T. Grafton,et al.  Automated image registration: II. Intersubject validation of linear and nonlinear models. , 1998, Journal of computer assisted tomography.

[4]  Michael Unser,et al.  Compensation of unidirectional geometric distortion in EPI using spline warping , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[5]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[6]  D. Parker,et al.  Reduction of geometric and intensity distortions in echo‐planar imaging using a multireference scan , 1997, Magnetic resonance in medicine.

[7]  P. P. Vaidyanathan,et al.  Generalized sampling theorems in multiresolution subspaces , 1997, IEEE Trans. Signal Process..

[8]  Xiang-Gen Xia,et al.  Vector-valued wavelets and vector filter banks , 1996, IEEE Trans. Signal Process..

[9]  Graham Thomas A comparison of motion-compensated interlace-to-progressive conversion methods , 1998, Signal Process. Image Commun..

[10]  Chung-Lin Huang,et al.  Three-dimensional PET emission scan registration and transmission scan synthesis , 1997, IEEE Transactions on Medical Imaging.

[11]  Patrick Flandrin,et al.  Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[12]  L. Schwartz Théorie des distributions , 1966 .

[13]  J. Ian Richards,et al.  Theory of Distributions: A general definition of multiplication and convolution for distributions , 1990 .

[14]  Guy Marchal,et al.  Multimodality image registration by maximization of mutual information , 1997, IEEE Transactions on Medical Imaging.

[15]  James C. Gee,et al.  On matching brain volumes , 1999, Pattern Recognit..

[16]  Max A. Viergever,et al.  Image registration by maximization of combined mutual information and gradient information , 2000, IEEE Transactions on Medical Imaging.

[17]  Michael A. Unser,et al.  Multiresolution spline warping for EPI registration , 1999, Optics & Photonics.

[18]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[19]  Jürgen Weese,et al.  Point-Based Elastic Registration of Medical Image Data Using Approximating Thin-Plate Splines , 1996, VBC.

[20]  Thierry Blu,et al.  Generalized sampling: a variational approach .I. Theory , 2002, IEEE Trans. Signal Process..

[21]  Josiane Zerubia,et al.  3D super-resolution using generalized sampling expansion , 1995, Proceedings., International Conference on Image Processing.

[22]  Olivier D. Faugeras,et al.  Variational principles, surface evolution, PDEs, level set methods, and the stereo problem , 1998, IEEE Trans. Image Process..

[23]  A. Papoulis,et al.  Generalized sampling expansion , 1977 .

[24]  Karl Zilles,et al.  A New Approach to Fast Elastic Alignment with Applications to Human Brain , 1996, VBC.

[25]  Bruce Mcgregor,et al.  Automatic registration of images of pigmented skin lesions , 1998, Pattern Recognit..

[26]  Gary E. Christensen,et al.  Deformable Shape Models for Anatomy , 1994 .

[27]  Akram Aldroubi,et al.  B-SPLINE SIGNAL PROCESSING: PART II-EFFICIENT DESIGN AND APPLICATIONS , 1993 .

[28]  J. Ashburner,et al.  Nonlinear spatial normalization using basis functions , 1999, Human brain mapping.

[29]  Ruzena Bajcsy,et al.  Multiresolution elastic matching , 1989, Comput. Vis. Graph. Image Process..

[30]  D. M. Freeman,et al.  Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching , 1998 .

[31]  Michael Unser,et al.  Unwarping of unidirectionally distorted EPI images , 2000, IEEE Transactions on Medical Imaging.

[32]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[33]  Thierry Blu,et al.  Fractional Splines and Wavelets , 2000, SIAM Rev..

[34]  H. Landau Necessary density conditions for sampling and interpolation of certain entire functions , 1967 .

[35]  P. Anandan,et al.  Hierarchical Model-Based Motion Estimation , 1992, ECCV.

[36]  Thierry Blu,et al.  Generalized sampling: a variational approach .II. Applications , 2002, IEEE Trans. Signal Process..

[37]  R. Kikinis,et al.  An Automated Registration Algorithm for Measuring MRI Subcortical Brain Structures , 1997, NeuroImage.

[38]  D. Parker,et al.  Elimination of eddy current artifacts in diffusion‐weighted echo‐planar images: The use of bipolar gradients , 1997, Magnetic resonance in medicine.

[39]  Pierre Moulin,et al.  Multiscale modeling and estimation of motion fields for video coding , 1997, IEEE Trans. Image Process..

[40]  J. L. Walsh,et al.  The theory of splines and their applications , 1969 .

[41]  I J Schoenberg,et al.  SPLINE FUNCTIONS AND THE PROBLEM OF GRADUATION. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Gilbert G. Walter,et al.  A sampling theorem for wavelet subspaces , 1992, IEEE Trans. Inf. Theory.

[43]  Thierry Blu,et al.  Quantitative Fourier Analysis of Approximation Techniques : Part I — Interpolators and Projectors , 1999 .

[44]  M. Unser,et al.  Generalized Sampling: A Variational Approach. Part I: Theory , 2001 .

[45]  Paul M. Thompson,et al.  A surface-based technique for warping three-dimensional images of the brain , 1996, IEEE Trans. Medical Imaging.

[46]  Charles R. Meyer,et al.  Mutual Information for Automated Multimodal Image Warping , 1996, VBC.

[47]  M. Unser,et al.  Interpolation revisited [medical images application] , 2000, IEEE Transactions on Medical Imaging.

[48]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[49]  Michael Unser,et al.  Fast B-spline Transforms for Continuous Image Representation and Interpolation , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Timothy F. Cootes,et al.  Automatic Interpretation and Coding of Face Images Using Flexible Models , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  J. L. Brown,et al.  Sampling reconstruction of N-dimensional band-limited images after multilinear filtering , 1989 .

[52]  Michael Unser,et al.  Optimization of mutual information for multiresolution image registration , 2000, IEEE Trans. Image Process..

[53]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[54]  Roberto Manduchi,et al.  Stereo Matching as a Nearest-Neighbor Problem , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  Michael Unser,et al.  Cardinal spline filters: Stability and convergence to the ideal sinc interpolator , 1992, Signal Process..

[56]  Erwin B. Bellers,et al.  New algorithm for motion estimation on interlaced video , 1998, Electronic Imaging.

[57]  Kevin J. Parker,et al.  Feature-adaptive motion tracking of ultrasound image sequences using a deformable mesh , 1998, IEEE Transactions on Medical Imaging.

[58]  Harry Shum,et al.  Motion estimation with quadtree splines , 1995, Proceedings of IEEE International Conference on Computer Vision.

[59]  Michael Unser,et al.  A general sampling theory for nonideal acquisition devices , 1994, IEEE Trans. Signal Process..

[60]  H. W. Werntges Partitions of unity improve neural function approximators , 1993, IEEE International Conference on Neural Networks.

[61]  Daniel Gross,et al.  Improved resolution from subpixel shifted pictures , 1992, CVGIP Graph. Model. Image Process..

[62]  Maria Gabrani,et al.  Surface-based matching using elastic transformations , 1999, Pattern Recognit..

[63]  Thierry Blu,et al.  Variational approach to tomographic reconstruction , 2001, SPIE Medical Imaging.

[64]  J S Hyde,et al.  Contour‐based registration technique to differentiate between task‐activated and head motion‐induced signal variations in fMRI , 1997, Magnetic resonance in medicine.

[65]  Denis Pellerin,et al.  Spatiotemporal energy-based method for velocity estimation , 1998, Signal Process..

[66]  Yuan-Chuan Tai,et al.  Utilization of 3-D elastic transformation in the registration of chest X-ray CT and whole body PET , 1996, 1996 IEEE Nuclear Science Symposium. Conference Record.

[67]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.

[68]  Akram Aldroubi,et al.  B-SPLINE SIGNAL PROCESSING: PART I-THEORY , 1993 .

[69]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[70]  M. Viergever,et al.  Medical image matching-a review with classification , 1993, IEEE Engineering in Medicine and Biology Magazine.

[71]  E. Hoffman,et al.  Utilization of 3-D elastic transformation in the registration of chest X-ray CT and whole body PET , 1996 .

[72]  Libero Verard,et al.  Fully automatic identification of AC and PC landmarks on brain MRI using scene analysis , 1997, IEEE Transactions on Medical Imaging.

[73]  H. Feichtinger,et al.  Exact iterative reconstruction algorithm for multivariate irregularly sampled functions in spline-like spaces: The $L^p$-theory , 1998 .

[74]  Eldon Hansen,et al.  Numerical Methods for Unconstrained Optimization and Nonlinear Equations (J. E. Dennis, Jr., and Robert B. Schnabel) , 1986 .

[75]  Colin Studholme,et al.  Incorporating an Image Distortion Model in Non-rigid Alignment of EPI with Conventional MRI , 1999, IPMI.

[76]  M. Vetterli,et al.  Nonseparable two- and three-dimensional wavelets , 1995, IEEE Trans. Signal Process..

[77]  A. Toga,et al.  A SURFACE-BASED TECHNIQUE FOR WARPING 3-DIMENSIONAL IMAGES OF THE BRAIN , 2000 .

[78]  Richard K. Beatson,et al.  Surface interpolation with radial basis functions for medical imaging , 1997, IEEE Transactions on Medical Imaging.

[79]  Eric W. Weisstein,et al.  The CRC concise encyclopedia of mathematics , 1999 .

[80]  Jürgen Weese,et al.  Robust 3D Deformation Field Estimation by Template Propagation , 2000, MICCAI.

[81]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[82]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[83]  Thomas Powell,et al.  Web design , 2000 .

[84]  Jan Kybic,et al.  Extended spectral subtraction , 1996, 1996 8th European Signal Processing Conference (EUSIPCO 1996).

[85]  Michael Unser,et al.  A pyramid approach to subpixel registration based on intensity , 1998, IEEE Trans. Image Process..

[86]  Michael Unser,et al.  Multiresolution approximation using shifted splines , 1998, IEEE Trans. Signal Process..

[87]  Jonathan S. Maltz,et al.  Reproducing kernel Hilbert space method for optimal interpolation of potential field data , 1998, IEEE Trans. Image Process..

[88]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[89]  Generalized Sampling : A Variational Approach . Part II : Applications , 2002 .

[90]  G. Subsol,et al.  Construction automatique d'atlas anatomiques morphométriques à partir d'images médicales tridimensionnelles : application à un atlas du crâne , 1995 .

[91]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[92]  I Kanno,et al.  Two Methods for Calculating Regional Cerebral Blood Flow from Emission Computed Tomography of Inert Gas Concentrations , 1979, Journal of computer assisted tomography.

[93]  Walter Schempp,et al.  Constructive Theory of Functions of Several Variables: Proceedings of a Conference Held at Oberwolfach, Germany, April 25 - May 1, 1976 , 1977, Constructive Theory of Functions of Several Variables.

[94]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[95]  M. Unser,et al.  Generalized Sampling: A Variational Approach , 2001 .

[96]  A. J. Jerri Correction to "The Shannon sampling theorem—Its various extensions and applications: A tutorial review" , 1979 .

[97]  Max A. Viergever,et al.  Image Registration by Maximization of Combined Mututal Information and Gradient Information , 2000, MICCAI.

[98]  Jean Duchon,et al.  Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces , 1976 .

[99]  A. J. Jerri The Shannon sampling theorem—Its various extensions and applications: A tutorial review , 1977, Proceedings of the IEEE.

[100]  Michael I. Miller,et al.  Volumetric transformation of brain anatomy , 1997, IEEE Transactions on Medical Imaging.

[101]  O. Faugeras,et al.  Variational principles, surface evolution, PDE's, level set methods and the stereo problem , 1998, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[102]  David M. Allen,et al.  The Relationship Between Variable Selection and Data Agumentation and a Method for Prediction , 1974 .

[103]  Karl J. Friston,et al.  MRI and PET Coregistration—A Cross Validation of Statistical Parametric Mapping and Automated Image Registration , 1997, NeuroImage.

[104]  Alex Pentland,et al.  Characterization of Neuropathological Shape Deformations , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[105]  M. Feder,et al.  Introduction to vector sampling expansion , 1998, IEEE Signal Processing Letters.

[106]  R. Kikinis,et al.  Nonlinear Registration and Template-Driven Segmentation , 1999 .

[107]  M. Unser,et al.  Interpolation Revisited , 2000, IEEE Trans. Medical Imaging.

[108]  Morten Bro-Nielsen,et al.  Fast Fluid Registration of Medical Images , 1996, VBC.

[109]  William H. Press,et al.  Numerical recipes in C , 2002 .

[110]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[111]  Guy Marchal,et al.  Multi-modality image registration by maximization of mutual information , 1996, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.

[112]  Jean-Philippe Thirion,et al.  Fast Non-Rigid Matching of 3D Medical Images , 1995 .

[113]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[114]  S. Mallat A wavelet tour of signal processing , 1998 .

[115]  J. P. Jones,et al.  Foundations of Medical Imaging , 1993 .

[116]  J. Zerubia,et al.  A Generalized Sampling Theory without bandlimiting constraints , 1998 .

[117]  Aslak Tveito,et al.  Box spline interpolation; a computational study , 1992 .

[118]  Yali Amit,et al.  A Nonlinear Variational Problem for Image Matching , 1994, SIAM J. Sci. Comput..

[119]  Jürgen Weese,et al.  Gray-Value Based Registration of CT and MR Images by Maximization of Local Correlation , 1999, MICCAI.

[120]  Christophe P. Bernard,et al.  Fast Optic Flow Computation with Discrete Wavelets , 1997 .

[121]  Jean Duchon,et al.  Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.

[122]  Lars Kai Hansen,et al.  Enhancing the Multivariate Signal of [15O] water PET Studies with a New Non-Linear Neuroanatomical Registration Algorithm , 1999, IEEE Trans. Medical Imaging.

[123]  F. Bookstein,et al.  Morphometric Tools for Landmark Data: Geometry and Biology , 1999 .

[124]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[125]  Arridge,et al.  Summarising Fluid Registration by Thin-Plate Spline Warps with Many Landmarks , 1997 .

[126]  J. Holden,et al.  Foundations of medical imaging , 1995 .

[127]  Hiroyuki Yoshida Removal of normal anatomic structures in radiographs using wavelet-based nonlinear variational method for image matching , 1998, Optics & Photonics.

[128]  C. Davatzikos Spatial normalization of 3D brain images using deformable models. , 1996, Journal of computer assisted tomography.

[129]  Antonio G. García,et al.  Nonuniform sampling of bandlimited signals with polynomial growth on the real axis , 1997, IEEE Trans. Inf. Theory.

[130]  Fang Chen,et al.  Left ventricular motion reconstruction based on elastic vector splines , 2000, IEEE Transactions on Medical Imaging.

[131]  Jerry L. Prince,et al.  Image registration based on boundary mapping , 1996, IEEE Trans. Medical Imaging.

[132]  María J. Ledesma-Carbayo,et al.  Cardiac Motion Analysis from Ultrasound Sequences Using Non-rigid Registration , 2001, MICCAI.

[133]  Simon R. Arridge,et al.  A survey of hierarchical non-linear medical image registration , 1999, Pattern Recognit..

[134]  Thierry Blu,et al.  Wavelets and radial basis functions: a unifying perspective , 2000, SPIE Optics + Photonics.

[135]  D L Hill,et al.  Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures. , 1997, Medical physics.

[136]  Michael Unser,et al.  A family of polynomial spline wavelet transforms , 1993, Signal Process..

[137]  Michael Unser,et al.  Multidimensional elastic registration of images using splines , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[138]  W. Madych,et al.  The Recovery of Irregularly Sampled Band Limited Functions via Tempered Splines , 1994 .

[139]  John C. Mazziotta,et al.  Automated image registration using a 105 parameter non-linear model , 1996, NeuroImage.

[140]  P. Jezzard,et al.  Correction for geometric distortion in echo planar images from B0 field variations , 1995, Magnetic resonance in medicine.

[141]  Max A. Viergever,et al.  Quantitative evaluation of convolution-based methods for medical image interpolation , 2001, Medical Image Anal..