Unfitted Nitsche's method for computing wave modes in topological materials

In this paper, we propose an unfitted Nitsche's method for computing wave modes in topological materials. The proposed method is based on Nitsche's technique to study the performance-enhanced topological materials which have strongly heterogeneous structures ({\it e.g.}, the refractive index is piecewise constant with high contrasts). For periodic bulk materials, we use Floquet-Bloch theory and solve an eigenvalue problem on a torus with unfitted meshes. For the materials with a line defect, a sufficiently large domain with zero boundary conditions is used to compute the localized eigenfunctions corresponding to the edge modes. The interfaces are handled by Nitsche's method on an unfitted uniform mesh. We prove the proposed methods converge optimally, and present numerical examples to validate the theoretical results and demonstrate the capability of simulating topological materials.

[1]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[2]  S. Raghu,et al.  Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. , 2008, Physical review letters.

[3]  Topological Photonics , 2014, 1408.6730.

[4]  J. Zou,et al.  Finite Element Methods and Their Convergencefor Elliptic and Parabolic Interface , 1996 .

[5]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[6]  Stefan Nolte,et al.  Observation of unconventional edge states in 'photonic graphene'. , 2014, Nature materials.

[7]  Yi Zhu,et al.  Wave packet dynamics in slowly modulated photonic graphene , 2019, Journal of Differential Equations.

[8]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[9]  Yi Zhu,et al.  Bloch theory-based gradient recovery method for computing topological edge modes in photonic graphene , 2019, J. Comput. Phys..

[10]  R. Bruce Kellogg,et al.  On the poisson equation with intersecting interfaces , 1974 .

[11]  Gennady Shvets,et al.  Photonic topological insulators. , 2013, Nature materials.

[12]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[13]  Zhimin Zhang,et al.  Superconvergence of partially penalized immersed finite element methods , 2018 .

[14]  Tao Lin,et al.  New Cartesian grid methods for interface problems using the finite element formulation , 2003, Numerische Mathematik.

[15]  Peng Song,et al.  A weak formulation for solving elliptic interface problems without body fitted grid , 2013, J. Comput. Phys..

[16]  J. Zou,et al.  Finite element methods and their convergence for elliptic and parabolic interface problems , 1998 .

[17]  M. Weinstein,et al.  Edge states and the valley Hall effect , 2019, Advances in Mathematics.

[18]  Tao Lin,et al.  Partially Penalized Immersed Finite Element Methods For Elliptic Interface Problems , 2015, SIAM J. Numer. Anal..

[19]  M. Soljačić,et al.  Topological photonics , 2014, Nature Photonics.

[20]  Maksim Skorobogatiy,et al.  Fundamentals of Photonic Crystal Guiding , 2008 .

[21]  S. Huber,et al.  Observation of phononic helical edge states in a mechanical topological insulator , 2015, Science.

[22]  Peter Hansbo,et al.  CutFEM: Discretizing geometry and partial differential equations , 2015 .

[23]  Xu Yang,et al.  Gradient recovery for elliptic interface problem: III. Nitsche's method , 2017, J. Comput. Phys..

[24]  Ivo Babuska,et al.  The finite element method for elliptic equations with discontinuous coefficients , 1970, Computing.

[25]  Z. Wang,et al.  Topologically protected elastic waves in phononic metamaterials , 2015, Nature Communications.

[26]  Mark J. Ablowitz,et al.  Conical diffraction in honeycomb lattices , 2009 .

[27]  Liwei Shi,et al.  A Petrov-Galerkin finite element interface method for interface problems with Bloch-periodic boundary conditions and its application in phononic crystals , 2019, J. Comput. Phys..

[28]  Xu-dong Liu,et al.  A numerical method for solving variable coefficient elliptic equation with interfaces , 2005 .

[29]  Z. Q. Zhang,et al.  Geometric phase and band inversion in periodic acoustic systems , 2015, Nature Physics.

[30]  Xu Yang,et al.  Gradient recovery for elliptic interface problem: II. Immersed finite element methods , 2016, J. Comput. Phys..

[31]  M. Segev,et al.  Photonic Floquet topological insulators , 2012, Nature.

[32]  John E. Dolbow,et al.  A robust Nitsche’s formulation for interface problems , 2012 .

[33]  L. Hong,et al.  Linear and nonlinear electromagnetic waves in modulated honeycomb media , 2019, Studies in Applied Mathematics.

[34]  Yi Zhu,et al.  Nonlinear Waves in Shallow Honeycomb Lattices , 2012, SIAM J. Appl. Math..

[35]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[36]  Morten Hjorth-Jensen Eigenvalue Problems , 2021, Explorations in Numerical Analysis.

[37]  Daniele Boffi,et al.  Finite element approximation of eigenvalue problems , 2010, Acta Numerica.

[38]  Hailong Guo,et al.  Gradient recovery for elliptic interface problem: I. body-fitted mesh , 2016, 1607.05898.

[39]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[40]  Alexander Szameit,et al.  Photonic Topological Insulators , 2014, CLEO 2014.

[41]  Zhilin Li The immersed interface method using a finite element formulation , 1998 .

[42]  Yi Zhu,et al.  Nonlinear Wave Packets in Deformed Honeycomb Lattices , 2013, SIAM J. Appl. Math..

[43]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[44]  Y. Zhu,et al.  Elliptic Operators with Honeycomb Symmetry: Dirac Points, Edge States and Applications to Photonic Graphene , 2017, Archive for Rational Mechanics and Analysis.

[45]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .