Trajectory similarity measures

Storing, querying, and analyzing trajectories is becoming increasingly important, as the availability and volumes of trajectory data increases. One important class of trajectory analysis is computing trajectory similarity. This paper introduces and compares four of the most common measures of trajectory similarity: longest common subsequence (LCSS), Fréchet distance, dynamic time warping (DTW), and edit distance. These four measures have been implemented in a new open source R package, freely available on CRAN [19]. The paper highlights some of the differences between these four similarity measures, using real trajectory data, in addition to indicating some of the important emerging applications for measurement of trajectory similarity.

[1]  Clu-istos Foutsos,et al.  Fast subsequence matching in time-series databases , 1994, SIGMOD '94.

[2]  Joachim Gudmundsson,et al.  Detecting Commuting Patterns by Clustering Subtrajectories , 2011, Int. J. Comput. Geom. Appl..

[3]  Shazia Wasim Sadiq,et al.  An Effectiveness Study on Trajectory Similarity Measures , 2013, ADC.

[4]  Eamonn J. Keogh,et al.  Scaling up dynamic time warping for datamining applications , 2000, KDD '00.

[5]  Dimitrios Gunopulos,et al.  Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.

[6]  Kenneth E. Barner,et al.  Image-based gesture recognition with support vector machines , 2008 .

[7]  Somayeh Dodge,et al.  Exploring movement using similarity analysis , 2011 .

[8]  H. Hahn Bemerkungen zu den Untersuchungen des Herrn M. Fréchet: Sur quelques points du calcul fonctionnel , 1908 .

[9]  Bingbing Ni,et al.  Crowded Scene Analysis: A Survey , 2015, IEEE Transactions on Circuits and Systems for Video Technology.

[10]  Bettina Speckmann,et al.  Similarity of trajectories taking into account geographic context , 2014, J. Spatial Inf. Sci..

[11]  Tieniu Tan,et al.  Comparison of Similarity Measures for Trajectory Clustering in Outdoor Surveillance Scenes , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[12]  Katerina Tzavella,et al.  How to compare movement? A review of physical movement similarity measures in geographic information science and beyond , 2014, Cartography and geographic information science.

[13]  Lei Chen,et al.  Robust and fast similarity search for moving object trajectories , 2005, SIGMOD '05.

[14]  Joachim Gudmundsson,et al.  Movement Patterns in Spatio-temporal Data , 2008, Encyclopedia of GIS.

[15]  M. Fréchet Sur quelques points du calcul fonctionnel , 1906 .

[16]  Patrick Laube,et al.  Computational Movement Analysis , 2014, SpringerBriefs in Computer Science.

[17]  Donald J. Berndt,et al.  Using Dynamic Time Warping to Find Patterns in Time Series , 1994, KDD Workshop.

[18]  Ross Purves,et al.  How fast is a cow? Cross‐Scale Analysis of Movement Data , 2011, Trans. GIS.

[19]  Joachim Gudmundsson,et al.  Movement Patterns in Spatio-Temporal Data , 2017, Encyclopedia of GIS.

[20]  Matej Kristan,et al.  A trajectory-based analysis of coordinated team activity in a basketball game , 2009, Comput. Vis. Image Underst..

[21]  Lei Chen,et al.  On The Marriage of Lp-norms and Edit Distance , 2004, VLDB.

[22]  Eamonn J. Keogh,et al.  Exact indexing of dynamic time warping , 2002, Knowledge and Information Systems.

[23]  Helmut Alt,et al.  Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..

[24]  Ulf Brefeld,et al.  Finding Similar Movements in Positional Data Streams , 2013, MLSA@PKDD/ECML.