Dynamics of a 3D autonomous quadratic system with an invariant algebraic surface

An invariant algebraic surface is calculated for a 3D autonomous quadratic system. Also, the dynamics near finite singularities and near infinite singularities on the invariant algebraic surface is analyzed. Furthermore, pitchfork bifurcation is analyzed using center manifold theorem and a first integral of this quadratic system for some special parameters is provided. Finally, the dynamics of this system at infinity using the Poincare compactification in $$R^3$$R3 is investigated and the singularly degenerate heteroclinic cycles are presented by a first integral and verified by numerical simulations.

[1]  Xiang Zhang,et al.  Invariant algebraic surfaces of the Lorenz system , 2002 .

[2]  C. Pessoa,et al.  Dynamics at infinity and other global dynamical aspects of Shimizu–Morioka equations , 2012 .

[3]  Marcelo Messias,et al.  Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system , 2009 .

[4]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[5]  Mohamed Belhaq,et al.  Homoclinic Connections in Strongly Self-Excited Nonlinear Oscillators: The Melnikov Function and the Elliptic Lindstedt–Poincaré Method , 2000 .

[6]  F. Dumortier,et al.  Polynomial Liénard Equations near Infinity , 1999 .

[7]  Yongjian Liu,et al.  Analysis of global dynamics in an unusual 3D chaotic system , 2012 .

[8]  Zhang Xiang,et al.  Integrals of motion of the Rabinovich system , 2000 .

[9]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[10]  Jaume Llibre,et al.  Global Dynamics of the Lorenz System with Invariant Algebraic Surfaces , 2010, Int. J. Bifurc. Chaos.

[11]  Qinsheng Bi,et al.  Hopf bifurcation analysis in the T system , 2010 .

[12]  Xiang Zhang,et al.  Darboux Polynomials and Algebraic Integrability of the Chen System , 2007, Int. J. Bifurc. Chaos.

[13]  Qigui Yang,et al.  Dynamics of a new Lorenz-like chaotic system , 2010 .

[14]  Jaume Llibre,et al.  Qualitative Theory of Planar Differential Systems , 2006 .

[15]  Dmitry Turaev,et al.  Analytical search for homoclinic bifurcations in the Shimizu-Morioka model , 2011 .

[16]  K. Wu,et al.  Global dynamics of the generalized Lorenz systems having invariant algebraic surfaces , 2013 .

[17]  Xiang Zhang,et al.  Dynamics of the Lorenz system having an invariant algebraic surface , 2007 .

[18]  Qigui Yang,et al.  A Chaotic System with One saddle and Two Stable Node-Foci , 2008, Int. J. Bifurc. Chaos.

[19]  Y. Y. Chen,et al.  Homoclinic and heteroclinic solutions of cubic strongly nonlinear autonomous oscillators by the hyperbolic perturbation method , 2009 .

[20]  Jaume Llibre,et al.  Bounded polynomial vector fields , 1990 .

[21]  Wang Zhen,et al.  Heteoclinic orbit and backstepping control of a 3D chaotic system , 2011 .

[22]  Zhen Wang Existence of attractor and control of a 3D differential system , 2010 .

[23]  Sergej Celikovský,et al.  Bilinear systems and chaos , 1994, Kybernetika.

[24]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[25]  Jaume Llibre,et al.  Global Dynamics in the Poincaré ball of the Chen System having Invariant Algebraic Surfaces , 2012, Int. J. Bifurc. Chaos.

[26]  Qigui Yang,et al.  Dynamics of the Lü System on the Invariant Algebraic Surface and at infinity , 2011, Int. J. Bifurc. Chaos.

[27]  Kesheng Wu,et al.  Darboux polynomials and rational first integrals of the generalized Lorenz systems , 2012 .

[28]  Jaume Llibre,et al.  Invariant algebraic surfaces of the Rikitake system , 2000 .

[29]  Peter Smith The Multiple Scales Method, Homoclinic Bifurcation and Melnikov's Method for Autonomous Systems , 1998 .