Dynamics of a 3D autonomous quadratic system with an invariant algebraic surface
暂无分享,去创建一个
Zhouchao Wei | Xiaojian Xi | Zhen Wang | Zhouchao Wei | Zhen Wang | Yong Xin Li | Xiaojian Xi | Yongxin Li
[1] Xiang Zhang,et al. Invariant algebraic surfaces of the Lorenz system , 2002 .
[2] C. Pessoa,et al. Dynamics at infinity and other global dynamical aspects of Shimizu–Morioka equations , 2012 .
[3] Marcelo Messias,et al. Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system , 2009 .
[4] Jinhu Lu,et al. A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.
[5] Mohamed Belhaq,et al. Homoclinic Connections in Strongly Self-Excited Nonlinear Oscillators: The Melnikov Function and the Elliptic Lindstedt–Poincaré Method , 2000 .
[6] F. Dumortier,et al. Polynomial Liénard Equations near Infinity , 1999 .
[7] Yongjian Liu,et al. Analysis of global dynamics in an unusual 3D chaotic system , 2012 .
[8] Zhang Xiang,et al. Integrals of motion of the Rabinovich system , 2000 .
[9] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[10] Jaume Llibre,et al. Global Dynamics of the Lorenz System with Invariant Algebraic Surfaces , 2010, Int. J. Bifurc. Chaos.
[11] Qinsheng Bi,et al. Hopf bifurcation analysis in the T system , 2010 .
[12] Xiang Zhang,et al. Darboux Polynomials and Algebraic Integrability of the Chen System , 2007, Int. J. Bifurc. Chaos.
[13] Qigui Yang,et al. Dynamics of a new Lorenz-like chaotic system , 2010 .
[14] Jaume Llibre,et al. Qualitative Theory of Planar Differential Systems , 2006 .
[15] Dmitry Turaev,et al. Analytical search for homoclinic bifurcations in the Shimizu-Morioka model , 2011 .
[16] K. Wu,et al. Global dynamics of the generalized Lorenz systems having invariant algebraic surfaces , 2013 .
[17] Xiang Zhang,et al. Dynamics of the Lorenz system having an invariant algebraic surface , 2007 .
[18] Qigui Yang,et al. A Chaotic System with One saddle and Two Stable Node-Foci , 2008, Int. J. Bifurc. Chaos.
[19] Y. Y. Chen,et al. Homoclinic and heteroclinic solutions of cubic strongly nonlinear autonomous oscillators by the hyperbolic perturbation method , 2009 .
[20] Jaume Llibre,et al. Bounded polynomial vector fields , 1990 .
[21] Wang Zhen,et al. Heteoclinic orbit and backstepping control of a 3D chaotic system , 2011 .
[22] Zhen Wang. Existence of attractor and control of a 3D differential system , 2010 .
[23] Sergej Celikovský,et al. Bilinear systems and chaos , 1994, Kybernetika.
[24] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[25] Jaume Llibre,et al. Global Dynamics in the Poincaré ball of the Chen System having Invariant Algebraic Surfaces , 2012, Int. J. Bifurc. Chaos.
[26] Qigui Yang,et al. Dynamics of the Lü System on the Invariant Algebraic Surface and at infinity , 2011, Int. J. Bifurc. Chaos.
[27] Kesheng Wu,et al. Darboux polynomials and rational first integrals of the generalized Lorenz systems , 2012 .
[28] Jaume Llibre,et al. Invariant algebraic surfaces of the Rikitake system , 2000 .
[29] Peter Smith. The Multiple Scales Method, Homoclinic Bifurcation and Melnikov's Method for Autonomous Systems , 1998 .