Extended envelopes around Galactic Cepheids IV. T Monocerotis and X Sagittarii from mid-infrared interferometry with VLTI/MIDI
暂无分享,去创建一个
O. Chesneau | P. Kervella | A. Gallenne | O. Chesneau | W. Gieren | P. Kervella | A. Mérand | A. Gallenne | J. Breitfelder | A. Merand | J. Breitfelder | W. Gieren
[1] Michael W. Feast,et al. The Luminosities and Distance Scales of Type II Cepheid and RR Lyrae variables , 2008, 0803.0466.
[2] T. Verhoelst,et al. The dust condensation sequence in red supergiant stars , 2009, 0901.1262.
[3] Richard J. Mathar,et al. MIDI the 10 m instrument on the VLTI , 2003 .
[4] G. Fazio,et al. GALACTIC CEPHEIDS WITH SPITZER. II. SEARCH FOR EXTENDED INFRARED EMISSION , 2010, 1011.3386.
[5] B. Skiff,et al. VizieR Online Data Catalog , 2009 .
[6] Denis Gillet,et al. High-resolution spectroscopy for Cepheids distance determination IV. Time series of Hα line profiles , 2008 .
[7] Valery V. Kovtyukh,et al. Phase-dependent Variation of the Fundamental Parameters of Cepheids. II. Periods Longer than 10 Days , 2005 .
[8] H. Neilson,et al. ON THE ENHANCEMENT OF MASS LOSS IN CEPHEIDS DUE TO RADIAL PULSATION. II. THE EFFECT OF METALLICITY , 2008, 0809.2793.
[9] P. Kervella,et al. Circumstellar envelopes of Cepheids: a possible bias affecting the distance scale? , 2012, Proceedings of the International Astronomical Union.
[10] W. Freedman,et al. Hubble Space Telescope Fine Guidance Sensor Parallaxes of Galactic Cepheid Variable Stars: Period-Luminosity Relations , 2007 .
[11] Th. Henning,et al. Steps toward interstellar silicate mineralogy - VII. Spectral properties and crystallization behaviour of magnesium silicates produced by the sol-gel method , 2003 .
[12] O. Chesneau. MIDI: Obtaining and analysing interferometric data in the mid-infrared , 2007 .
[13] Pierre Kervella,et al. The circumstellar envelopes of the Cepheids $\mathsf{\ell}$ Carinae and RS Puppis - Comparative study in the infrared with Spitzer, VLT/VISIR, and VLTI/MIDI , 2009, 0902.1588.
[14] G. Bono,et al. GALACTIC CEPHEIDS WITH SPITZER. I. LEAVITT LAW AND COLORS , 2009, 0911.2470.
[15] Th. Henning,et al. Aluminum Oxide and the Opacity of Oxygen-rich Circumstellar Dust in the 12-17 Micron Range , 1997 .
[16] D. Bersier,et al. Cepheid distances from infrared long-baseline interferometry - I. VINCI/VLTI observations of seven Galactic Cepheids , 2004 .
[17] N. Langer,et al. The Cepheid mass discrepancy and pulsation-driven mass loss , 2011, 1104.1638.
[18] F. Castelli,et al. Round Table Summary: Problems in Modelling Stellar Atmospheres , 2003 .
[19] T. G. Barnes,et al. Observational studies of Cepheids. II - BVRI photometry of 112 Cepheids , 1984 .
[20] Mark R. Kidger,et al. Spectral Irradiance Calibration in the Infrared. X. A Self-Consistent Radiometric All-Sky Network of Absolutely Calibrated Stellar Spectra , 1999 .
[21] D. Bersier,et al. A New Calibration Of Galactic Cepheid Period-Luminosity Relations From B To K Bands, And A Comparison To LMC Relations , 2007, 0709.3255.
[22] G. Fazio,et al. AN INFRARED NEBULA ASSOCIATED WITH δ CEPHEI: EVIDENCE OF MASS LOSS? , 2010, 1102.0305.
[23] S. E. Persson,et al. THE CARNEGIE HUBBLE PROGRAM: THE LEAVITT LAW AT 3.6 AND 4.5 μm IN THE MILKY WAY , 2012, 1209.4946.
[24] Martin G. Cohen,et al. THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.
[25] R. Hindsley,et al. The period-luminosity relation for cepheid variable stars , 1989 .
[26] G. Perrin,et al. Extended envelopes around Galactic Cepheids I. Carinae from near and mid-infrared interferometry with the VLTI , 2006 .
[27] Wendy L. Freedman,et al. CARNEGIE HUBBLE PROGRAM: A MID-INFRARED CALIBRATION OF THE HUBBLE CONSTANT , 2012, 1208.3281.
[28] C. Alvarez,et al. The sub-arcsecond dusty environment of Eta Carinae , 2005 .
[29] D. Bersier,et al. High resolution spectroscopy for Cepheids distance determination. I. Line asymmetry , 2006, 0804.1321.
[30] S. Kanbur,et al. Period-luminosity relations for Cepheid variables: from mid-infrared to multi-phase , 2012, 1202.0150.
[31] Pierre Kervella,et al. Extended envelopes around Galactic Cepheids. II. Polaris and delta Cephei from near-infrared interfe , 2006 .
[32] Potsdam,et al. Calibrating The Cepheid Period-Luminosity Relation From The Infrared Surface Brightness Technique I. The P-Factor, The Milky Way Relations, And A Universal K-Band Relation , 2011, 1109.2017.
[33] K. Nordsieck,et al. The Size distribution of interstellar grains , 1977 .
[34] D. Majaess,et al. ON THE FORM OF THE SPITZER LEAVITT LAW AND ITS DEPENDENCE ON METALLICITY , 2013, 1306.0011.
[35] C. Soubiran,et al. Reddenings of FGK supergiants and classical Cepheids from spectroscopic data , 2008, 0807.2057.
[36] P. Kervella,et al. Thermal infrared properties of classical and type II Cepheids - Diffraction limited 10 μm imaging with VLT/VISIR , 2011, 1111.7215.
[37] J. Pollack,et al. Composition and radiative properties of grains in molecular clouds and accretion disks , 1994 .
[38] W. Gieren,et al. Calibration of the Distance Scale from Cepheids , 2003, astro-ph/0301291.
[39] E. al.,et al. Extended Envelopes around Galactic Cepheids. III. Y Ophiuchi and α Persei from Near-Infrared Interferometry with CHARA/FLUOR , 2007, 0704.1825.
[40] H. Deasy. Observational evidence for mass loss from classical Cepheids , 1988 .