Generalizations of Maxwell (super)algebras by the expansion method

[1]  J. Lukierski,et al.  New particle model in extended space–time and covariantization of planar Landau dynamics , 2012, 1207.5683.

[2]  J. Lukierski,et al.  Supersymmetrization schemes of D=4 Maxwell algebra , 2011, 1111.3598.

[3]  J. M. Izquierdo,et al.  D=3 (p,q)-Poincaré supergravities from Lie algebra expansions , 2011, 1107.2569.

[4]  J. Lukierski Generalized Wigner-Inönü contractions and Maxwell (super)algebras , 2010, 1007.3405.

[5]  J. Lukierski,et al.  Deformations of Maxwell superalgebras and their applications , 2010, 1005.3714.

[6]  J. Lukierski,et al.  Maxwell superalgebra and superparticles in constant gauge backgrounds. , 2009, Physical review letters.

[7]  J. Lukierski,et al.  Deformations of Maxwell algebra and their dynamical realizations , 2009, 0906.4464.

[8]  S. Bonanos,et al.  Infinite sequence of Poincaré group extensions: structure and dynamics , 2008, 0812.4140.

[9]  J. M. Izquierdo,et al.  Expansions of Algebras and Superalgebras and Some Applications , 2007, hep-th/0703017.

[10]  J. M. Izquierdo,et al.  Generating Lie and gauge free differential (super)algebras by expanding Maurer–Cartan forms and Chern–Simons supergravity , 2002, hep-th/0212347.

[11]  M. Hatsuda,et al.  Wess-Zumino term for the AdS superstring and generalized Inönü-Wigner contraction , 2001, hep-th/0106114.

[12]  Evelyn Weimar-Woods CONTRACTIONS, GENERALIZED INÖNÜ-WIGNER CONTRACTIONS AND DEFORMATIONS OF FINITE-DIMENSIONAL LIE ALGEBRAS , 2000 .

[13]  J. M. Izquierdo,et al.  The geometry of branes and extended superspaces , 1999, hep-th/9904137.

[14]  J. M. Izquierdo,et al.  Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics: A first look at cohomology of groups and related topics , 1995 .

[15]  Evelyn Weimar-Woods Contractions of Lie algebras: Generalized Inönü-Wigner contractions versus graded contractions , 1995 .

[16]  Mariano A. del Olmo,et al.  Local realizations of kinematical groups with a constant electromagnetic field. I. The relativistic case , 1990 .

[17]  A. Achúcarro,et al.  Extended supergravities in d=2+1 as Chern-Simons theories , 1989 .

[18]  Michael B. Green,et al.  Super-translations, superstrings and Chern-Simons forms , 1989 .

[19]  R. Schrader The Maxwell Group and the Quantum Theory of Particles in Classical Homogeneous Electromagnetic Fields , 1972 .

[20]  H. Bacry,et al.  Group-theoretical analysis of elementary particles in an external electromagnetic field , 1970 .