Symbolic representation and retrieval of moving object trajectories

Searching moving object trajectories of video databases has been applied to many fields, such as video data analysis, content-based video retrieval, video scene classification. In this paper, we propose a novel representation of trajectories, called <i>movement pattern strings</i>, which convert the trajectories into symbolic representations. Movement pattern strings encode both the movement direction and the movement distance information of the trajectories. The distances that are computed in a symbolic space are lower bounds of the distances of original trajectory data, which guarantees that no false dismissals will be introduced using movement pattern strings to retrieve trajectories. In order to improve the retrieval efficiency, we define a <i>modified frequency distance</i> for frequency vectors that are obtained from movement pattern strings to reduce the dimensionality and the computation cost. The experimental results show that using movement pattern strings is almost as effective as using raw trajectories. In addition, the cost of retrieving similar trajectories can greatly be reduced when the modified frequency distance is used as a filter

[1]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[2]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[3]  Christos Faloutsos,et al.  Efficient Similarity Search In Sequence Databases , 1993, FODO.

[4]  Clu-istos Foutsos,et al.  Fast subsequence matching in time-series databases , 1994, SIGMOD '94.

[5]  Giuseppe Psaila,et al.  Querying Shapes of Histories , 1995, VLDB.

[6]  Forouzan Golshani,et al.  Motion recovery for video content classification , 1995, TOIS.

[7]  Nasser Yazdani,et al.  Matching and indexing sequences of different lengths , 1997, CIKM '97.

[8]  Dan Gusfield,et al.  Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .

[9]  Arbee L. P. Chen,et al.  Retrieving video data via motion tracks of content symbols , 1997, CIKM '97.

[10]  Dan Gusfield,et al.  Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .

[11]  Duane Szafron,et al.  Modeling of moving objects in a video database , 1997, Proceedings of IEEE International Conference on Multimedia Computing and Systems.

[12]  Christos Faloutsos,et al.  Efficiently supporting ad hoc queries in large datasets of time sequences , 1997, SIGMOD '97.

[13]  Dimitrios Gunopulos,et al.  Finding Similar Time Series , 1997, PKDD.

[14]  Christos Faloutsos,et al.  Efficient retrieval of similar time sequences under time warping , 1998, Proceedings 14th International Conference on Data Engineering.

[15]  Alberto O. Mendelzon,et al.  Efficient Retrieval of Similar Time Sequences Using DFT , 1998, FODO.

[16]  Ambuj K. Singh,et al.  Dimensionality reduction for similarity searching in dynamic databases , 1998, SIGMOD '98.

[17]  Man Hon Wong,et al.  Fast time-series searching with scaling and shifting , 1999, PODS '99.

[18]  Shih-Fu Chang,et al.  Motion trajectory matching of video objects , 1999, Electronic Imaging.

[19]  Ada Wai-Chee Fu,et al.  Efficient time series matching by wavelets , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[20]  Philip S. Yu,et al.  Adaptive query processing for time-series data , 1999, KDD '99.

[21]  Eamonn J. Keogh,et al.  Scaling up dynamic time warping for datamining applications , 2000, KDD '00.

[22]  Christos Faloutsos,et al.  Fast Time Sequence Indexing for Arbitrary Lp Norms , 2000, VLDB.

[23]  Deok-Hwan Kim,et al.  Similarity search for multidimensional data sequences , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[24]  Margrit Betke,et al.  THE CAMERA MOUSE: PRELIMINARY INVESTIGATION OF AUTOMATED VISUAL TRACKING FOR COMPUTER ACCESS , 2000 .

[25]  Ambuj K. Singh,et al.  Variable length queries for time series data , 2001, Proceedings 17th International Conference on Data Engineering.

[26]  James J. Little,et al.  Video retrieval by spatial and temporal structure of trajectories , 2001, IS&T/SPIE Electronic Imaging.

[27]  Rangasami L. Kashyap,et al.  A Spatio-Temporal Semantic Model for Multimedia Database Systems and Multimedia Information Systems , 2001, IEEE Trans. Knowl. Data Eng..

[28]  Eamonn J. Keogh,et al.  Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases , 2001, Knowledge and Information Systems.

[29]  Renée J. Miller,et al.  Similarity search over time-series data using wavelets , 2002, Proceedings 18th International Conference on Data Engineering.

[30]  Eamonn J. Keogh,et al.  Locally adaptive dimensionality reduction for indexing large time series databases , 2001, SIGMOD '01.

[31]  Dimitrios Gunopulos,et al.  Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.

[32]  Jessica Lin,et al.  Finding Motifs in Time Series , 2002, KDD 2002.

[33]  Tetsuji Satoh,et al.  Shape-Based Similarity Query for Trajectory of Mobile Objects , 2003, Mobile Data Management.

[34]  Dimitrios Gunopulos,et al.  A Wavelet-Based Anytime Algorithm for K-Means Clustering of Time Series , 2003 .

[35]  Eamonn J. Keogh,et al.  On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration , 2002, Data Mining and Knowledge Discovery.

[36]  Lei Chen,et al.  On The Marriage of Lp-norms and Edit Distance , 2004, VLDB.

[37]  Raymond T. Ng,et al.  Indexing spatio-temporal trajectories with Chebyshev polynomials , 2004, SIGMOD '04.

[38]  Lei Chen,et al.  On the Marriage of Edit Distance and Lp Norms , 2004, VLDB 2004.

[39]  Lei Chen,et al.  Robust and fast similarity search for moving object trajectories , 2005, SIGMOD '05.