Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships.

Genomics is narrowing uncertainty in the phylogenetic structure for many amniote groups. For one of the most diverse and species-rich groups, the squamate reptiles (lizards and snakes, amphisbaenians), an inverse correlation between the number of taxa and loci sampled still persists across all publications using DNA sequence data and reaching a consensus on the relationships among them has been highly problematic. Here, we use high-throughput sequence data from 289 samples covering 75 families of squamates to address phylogenetic affinities, estimate divergence times, and characterize residual topological uncertainty in the presence of genome scale data. Importantly, we address genomic support for the traditional taxonomic groupings Scleroglossa and Macrostomata using novel machine-learning techniques. We interrogate genes using various metrics inherent to these loci, including parsimony-informative sites, phylogenetic informativeness, length, gaps, number of substitutions, and site concordance to understand why certain loci fail to find previously well-supported molecular clades and how they fail to support species-tree estimates. We show that both incomplete lineage sorting and poor gene-tree estimation (due to a few undesirable gene properties, such as an insufficient number of parsimony informative sites), may account for most gene and species-tree discordance. We find overwhelming signal for Toxicofera, and also show that none of the loci included in this study supports Scleroglossa or Macrostomata. We comment on the origins and diversification of Squamata throughout the Mesozoic and underscore remaining uncertainties that persist in both deeper parts of the tree (e.g., relationships between Dibamia, Gekkota, and remaining squamates; and between the three toxiferan clades Iguania, Serpentes, and Anguiformes) and within specific clades (e.g., affinities among gekkotan, pleurodont iguanians, and colubroid families).

[1]  A. P. Raselimanana,et al.  The Origins and Diversification of the Exceptionally Rich Gemsnakes (Colubroidea: Lamprophiidae: Pseudoxyrhophiinae) in Madagascar. , 2019, Systematic biology.

[2]  Bui Quang Minh,et al.  New Methods to Calculate Concordance Factors for Phylogenomic Datasets , 2018, bioRxiv.

[3]  Marcelo Gehara,et al.  The Biogeography of Deep Time Phylogenetic Reticulation , 2018, Systematic biology.

[4]  S. Bonatto,et al.  Origin and hidden diversity within the poorly known Galápagos snake radiation (Serpentes: Dipsadidae) , 2018, Systematics and Biodiversity.

[5]  L. Mancini,et al.  The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps , 2018, Nature.

[6]  Stephen A. Smith,et al.  Disparity, diversity, and duplications in the Caryophyllales. , 2018, The New phytologist.

[7]  J. Keogh,et al.  Evolution of extreme ontogenetic allometric diversity and heterochrony in pythons, a clade of giant and dwarf snakes , 2017, Evolution; international journal of organic evolution.

[8]  K. Lips,et al.  Host susceptibility to snake fungal disease is highly dispersed across phylogenetic and functional trait space , 2017, Science Advances.

[9]  J. Wiens,et al.  Phylogenomic analyses of more than 4000 nuclear loci resolve the origin of snakes among lizard families , 2017, Biology Letters.

[10]  Yu Wang,et al.  Genomic evidence reveals a radiation of placental mammals uninterrupted by the KPg boundary , 2017, Proceedings of the National Academy of Sciences.

[11]  T. Reeder,et al.  Phylogenetic inference and divergence dating of snakes using molecules, morphology and fossils: new insights into convergent evolution of feeding morphology and limb reduction , 2017 .

[12]  S. Ho,et al.  New Statistical Criteria Detect Phylogenetic Bias Caused by Compositional Heterogeneity , 2017, Molecular biology and evolution.

[13]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[14]  J. Lundberg,et al.  Genome-wide interrogation advances resolution of recalcitrant groups in the tree of life , 2017, Nature Ecology &Evolution.

[15]  Jeremy M. Brown,et al.  Bayes Factors Unmask Highly Variable Information Content, Bias, and Extreme Influence in Phylogenomic Analyses , 2016, Systematic biology.

[16]  A. Pyron Novel Approaches for Phylogenetic Inference from Morphological Data and Total‐Evidence Dating in Squamate Reptiles (Lizards, Snakes, and Amphisbaenians) , 2016, Systematic biology.

[17]  J. Townsend,et al.  PhyInformR: phylogenetic experimental design and phylogenomic data exploration in R , 2016, BMC Evolutionary Biology.

[18]  T. Quental,et al.  Diversification in vipers: Phylogenetic relationships, time of divergence and shifts in speciation rates. , 2016, Molecular phylogenetics and evolution.

[19]  Ziheng Yang,et al.  Challenges in Species Tree Estimation Under the Multispecies Coalescent Model , 2016, Genetics.

[20]  A. Lemmon,et al.  Expanding anchored hybrid enrichment to resolve both deep and shallow relationships within the spider tree of life , 2016, BMC Evolutionary Biology.

[21]  A. Lemmon,et al.  Methodological congruence in phylogenomic analyses with morphological support for teiid lizards (Sauria: Teiidae). , 2016, Molecular phylogenetics and evolution.

[22]  Jianzhi Zhang,et al.  Morphological and molecular convergences in mammalian phylogenetics , 2016, Nature Communications.

[23]  T. Reeder,et al.  Squamate Phylogenetics, Molecular Branch Lengths, and Molecular Apomorphies: A Response to McMahan et al. , 2016, Copeia.

[24]  A. Lemmon,et al.  Integrating phylogenomic and morphological data to assess candidate species‐delimitation models in brown and red‐bellied snakes (Storeria) , 2016 .

[25]  J. Scott Keogh,et al.  Parallel selective pressures drive convergent diversification of phenotypes in pythons and boas. , 2016, Ecology letters.

[26]  J. Wiens,et al.  Phylogenomic analyses reveal novel relationships among snake families. , 2016, Molecular phylogenetics and evolution.

[27]  Jeffrey P. Townsend,et al.  A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing , 2016, Nature.

[28]  Olga Chernomor,et al.  Terrace Aware Data Structure for Phylogenomic Inference from Supermatrices , 2016, Systematic biology.

[29]  J. Wiens,et al.  How Should Genes and Taxa be Sampled for Phylogenomic Analyses with Missing Data? An Empirical Study in Iguanian Lizards. , 2016, Systematic biology.

[30]  E. A. Myers,et al.  Predicting community structure in snakes on Eastern Nearctic islands using ecological neutral theory and phylogenetic methods , 2015, Proceedings of the Royal Society B: Biological Sciences.

[31]  Peng Zhang,et al.  Selecting Question-Specific Genes to Reduce Incongruence in Phylogenomics: A Case Study of Jawed Vertebrate Backbone Phylogeny. , 2015, Systematic biology.

[32]  A. Lemmon,et al.  Comparing species tree estimation with large anchored phylogenomic and small Sanger-sequenced molecular datasets: an empirical study on Malagasy pseudoxyrhophiine snakes , 2015, BMC Evolutionary Biology.

[33]  J. Townsend,et al.  A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing , 2015, Nature.

[34]  Yun S. Song,et al.  Deep Learning for Population Genetic Inference , 2015, bioRxiv.

[35]  Mark A. Davis,et al.  A review of the systematics and taxonomy of Pythonidae: an ancient serpent lineage , 2015 .

[36]  Tandy J. Warnow,et al.  ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes , 2015, Bioinform..

[37]  Allison Y. Hsiang,et al.  The origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record , 2015, BMC Evolutionary Biology.

[38]  William Stafford Noble,et al.  Machine learning applications in genetics and genomics , 2015, Nature Reviews Genetics.

[39]  Anup Som,et al.  Causes, consequences and solutions of phylogenetic incongruence , 2015, Briefings Bioinform..

[40]  T. Townsend,et al.  Integrated Analyses Resolve Conflicts over Squamate Reptile Phylogeny and Reveal Unexpected Placements for Fossil Taxa , 2015, PloS one.

[41]  Matthew W. Hahn,et al.  Convergent evolution of the genomes of marine mammals , 2015, Nature Genetics.

[42]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[43]  A. Lemmon,et al.  Effectiveness of phylogenomic data and coalescent species-tree methods for resolving difficult nodes in the phylogeny of advanced snakes (Serpentes: Caenophidia). , 2014, Molecular phylogenetics and evolution.

[44]  R. A. Pyron Temperate extinction in squamate reptiles and the roots of latitudinal diversity gradients , 2014 .

[45]  Simon H. Martin,et al.  Evaluating the Use of ABBA–BABA Statistics to Locate Introgressed Loci , 2014, bioRxiv.

[46]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[47]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[48]  R. A. Pyron,et al.  Early origin of viviparity and multiple reversions to oviparity in squamate reptiles. , 2014, Ecology letters.

[49]  H. Zaher,et al.  Consuming viscous prey: a novel protein-secreting delivery system in neotropical snail-eating snakes , 2014, BMC Evolutionary Biology.

[50]  R. Dudley,et al.  Repeated elevational transitions in hemoglobin function during the evolution of Andean hummingbirds , 2013, Proceedings of the National Academy of Sciences.

[51]  Raymond Hoser,et al.  Case 3601 Spracklandus Hoser, 2009 (Reptilia, Serpentes, elapidae): request for confirmation of the availability of the generic name and for the nomenclatural validation of the journal in which it was published , 2013, The Bulletin of Zoological Nomenclature.

[52]  C. Anderson,et al.  Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara) , 2013, BMC Evolutionary Biology.

[53]  P. Provero,et al.  Genome-wide signatures of convergent evolution in echolocating mammals , 2013, Nature.

[54]  J. Townsend,et al.  Evaluating Phylogenetic Informativeness as a Predictor of Phylogenetic Signal for Metazoan, Fungal, and Mammalian Phylogenomic Data Sets , 2013, BioMed research international.

[55]  R. A. Pyron,et al.  A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes , 2013, BMC Evolutionary Biology.

[56]  Minh Anh Nguyen,et al.  Ultrafast Approximation for Phylogenetic Bootstrap , 2013, Molecular biology and evolution.

[57]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[58]  Damaris Zurell,et al.  Collinearity: a review of methods to deal with it and a simulation study evaluating their performance , 2013 .

[59]  T. Townsend,et al.  Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species , 2012, Biology Letters.

[60]  T. Townsend,et al.  Estimating divergence dates and evaluating dating methods using phylogenomic and mitochondrial data in squamate reptiles. , 2012, Molecular phylogenetics and evolution.

[61]  Tamás Papp,et al.  Re-Mind the Gap! Insertion – Deletion Data Reveal Neglected Phylogenetic Potential of the Nuclear Ribosomal Internal Transcribed Spacer (ITS) of Fungi , 2012, PloS one.

[62]  O. Rieppel “Regressed” Macrostomatan Snakes , 2012 .

[63]  Brian C. O'Meara,et al.  treePL: divergence time estimation using penalized likelihood for large phylogenies , 2012, Bioinform..

[64]  A. Lemmon,et al.  Anchored hybrid enrichment for massively high-throughput phylogenomics. , 2012, Systematic biology.

[65]  A. Lemmon,et al.  The venom-gland transcriptome of the eastern diamondback rattlesnake (Crotalus adamanteus) , 2012, BMC Genomics.

[66]  O. Rieppel,et al.  Assembling the Squamate Tree of Life: Perspectives from the Phenotype and the Fossil Record , 2012 .

[67]  Shane S. Sturrock,et al.  Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..

[68]  R. A. Pyron,et al.  EXTINCTION, ECOLOGICAL OPPORTUNITY, AND THE ORIGINS OF GLOBAL SNAKE DIVERSITY , 2012, Evolution; international journal of organic evolution.

[69]  H. Zaher,et al.  The skull of the Upper Cretaceous snake Dinilysia patagonica Smith-Woodward, 1901, and its phylogenetic position revisited , 2012 .

[70]  J. Townsend,et al.  PhyDesign: an online application for profiling phylogenetic informativeness , 2011, BMC Evolutionary Biology.

[71]  O. Gascuel,et al.  Survey of Branch Support Methods Demonstrates Accuracy, Power, and Robustness of Fast Likelihood-based Approximation Schemes , 2011, Systematic biology.

[72]  A. Miralles,et al.  Controversial snake relationships supported by reproductive anatomy , 2011, Journal of anatomy.

[73]  H. Philippe,et al.  Resolving Difficult Phylogenetic Questions: Why More Sequences Are Not Enough , 2011, PLoS biology.

[74]  L. Vitt,et al.  The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees. , 2011, Molecular phylogenetics and evolution.

[75]  Caitlin A. Kuczynski,et al.  Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa. , 2010, Systematic biology.

[76]  L. Vitt,et al.  Snake diets and the deep history hypothesis , 2010 .

[77]  S. Hedges,et al.  Blindsnake evolutionary tree reveals long history on Gondwana , 2010, Biology Letters.

[78]  WenJun Zhang,et al.  Computational Ecology: Artificial Neural Networks and Their Applications , 2010 .

[79]  Philip L. F. Johnson,et al.  A Draft Sequence of the Neandertal Genome , 2010, Science.

[80]  S. Peters,et al.  Predation upon Hatchling Dinosaurs by a New Snake from the Late Cretaceous of India , 2010, PLoS biology.

[81]  S. Evans,et al.  The Origin, Early History and Diversification of Lepidosauromorph Reptiles , 2010 .

[82]  Todd A. Castoe,et al.  Evidence for an ancient adaptive episode of convergent molecular evolution , 2009, Proceedings of the National Academy of Sciences.

[83]  Christopher M. R. Kelly,et al.  Phylogeny, biogeography and classification of the snake superfamily Elapoidea: a rapid radiation in the late Eocene , 2009, Cladistics : the international journal of the Willi Hennig Society.

[84]  S. Hedges,et al.  The molecular evolutionary tree of lizards, snakes, and amphisbaenians. , 2009, Comptes rendus biologies.

[85]  R. Murphy,et al.  Molecular phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis on South American Xenodontines: a revised classification and descriptions of new taxa , 2009 .

[86]  Max Kuhn,et al.  Building Predictive Models in R Using the caret Package , 2008 .

[87]  S. Carroll,et al.  Frequent and widespread parallel evolution of protein sequences. , 2008, Molecular biology and evolution.

[88]  J. Conrad Phylogeny And Systematics Of Squamata (Reptilia) Based On Morphology , 2008 .

[89]  D. Hillis,et al.  Taxon sampling and the accuracy of phylogenetic analyses , 2008 .

[90]  R. Ricklefs,et al.  Evolutionary diversification of clades of squamate reptiles , 2007, Journal of evolutionary biology.

[91]  D. Baum Concordance trees, concordance factors, and the exploration of reticulate genealogy , 2007 .

[92]  B. Larget,et al.  Bayesian estimation of concordance among gene trees. , 2006, Molecular biology and evolution.

[93]  David Paull,et al.  Machine learning of poorly predictable ecological data , 2006 .

[94]  J. Scanlon Skull of the large non-macrostomatan snake Yurlunggur from the Australian Oligo-Miocene , 2006, Nature.

[95]  F. Burbrink,et al.  Phylogeny of the Colubroidea (Serpentes): new evidence from mitochondrial and nuclear genes. , 2005, Molecular phylogenetics and evolution.

[96]  D. Harris,et al.  How much data are needed to resolve a difficult phylogeny?: case study in Lamiales. , 2005, Systematic biology.

[97]  S. Hedges,et al.  The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. , 2005, Comptes rendus biologies.

[98]  T. Garland,et al.  Phylogenetic approaches in comparative physiology , 2005, Journal of Experimental Biology.

[99]  Daniel H. Huson,et al.  Reconstruction of Reticulate Networks from Gene Trees , 2005, RECOMB.

[100]  L. Vitt,et al.  Deep history impacts present-day ecology and biodiversity , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Y. Wang,et al.  The early Cretaceous lizard genus Yabeinosaurus from China: Resolving an enigma , 2005 .

[102]  R. Shine,et al.  Parental care protects against infanticide in the lizard Egernia saxatilis (Scincidae) , 2004, Animal Behaviour.

[103]  E. Louis,et al.  Molecular phylogenetics of squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. , 2004, Systematic biology.

[104]  Nicolas Vidal,et al.  Molecular evidence for a terrestrial origin of snakes , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[105]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[106]  S. Evans At the feet of the dinosaurs: the early history and radiation of lizards , 2003, Biological reviews of the Cambridge Philosophical Society.

[107]  O. Rieppel,et al.  THE ANATOMY AND RELATIONSHIPS OF HAASIOPHIS TERRASANCTUS, A FOSSIL SNAKE WITH WELL-DEVELOPED HIND LIMBS FROM THE MID-CRETACEOUS OF THE MIDDLE EAST , 2003 .

[108]  Sudhir Kumar,et al.  Heterogeneity of nucleotide frequencies among evolutionary lineages and phylogenetic inference. , 2003, Molecular biology and evolution.

[109]  Michael S. Y. Lee,et al.  Snake phylogeny based on osteology, soft anatomy and ecology , 2002, Biological reviews of the Cambridge Philosophical Society.

[110]  J. Brian Gray,et al.  Introduction to Linear Regression Analysis , 2002, Technometrics.

[111]  M. Sanderson Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. , 2002, Molecular biology and evolution.

[112]  Julian J. Faraway,et al.  Practical Regression and Anova using R , 2002 .

[113]  Elizabeth A. Peck,et al.  Introduction to Linear Regression Analysis , 2001 .

[114]  S. McLoughlin The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism , 2001 .

[115]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[116]  O. Rieppel,et al.  The intramandibular joint in squamates, and the phylogenetic relationships of the fossil snake Pachyrhachis problematicus Haas / , 2000 .

[117]  S. Evans,et al.  A short-limbed lizard from the lower cretaceous of Spain , 1999 .

[118]  Hidetoshi Shimodaira,et al.  Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.

[119]  H. Greene,et al.  Gape size and evolution of diet in snakes: feeding ecology of erycine boas , 1999 .

[120]  Michael S. Y. Lee Convergent evolution and character correlation in burrowing reptiles: towards a resolution of squamate relationships , 1998 .

[121]  S. Evans,et al.  An unusual lizard (Reptilia: Squamata) from the Early Cretaceous of Las Hoyas, Spain , 1998 .

[122]  S. Donnellan,et al.  C-mos, a nuclear marker useful for squamate phylogenetic analysis. , 1998, Molecular phylogenetics and evolution.

[123]  H. Zaher The Phylogenetic Position Of Pachyrhachis Within Snakes (Squamata, Lepidosauria) , 1998 .

[124]  J. Hallermann THE ETHMOIDAL REGION OF DIBAMUS TAYLORI (SQUAMATA : DIBAMIDAE), WITH A PHYLOGENETIC HYPOTHESIS ON DIBAMID RELATIONSHIPS WITHIN SQUAMATA , 1998 .

[125]  M. Norell,et al.  Taxonomic revision of Carusia (Reptilia, Squamata) from the late Cretaceous of the Gobi Desert and phylogenetic relationships of anguimorphan lizards. American Museum novitates ; no. 3230 , 1998 .

[126]  I. Dimopoulos,et al.  Application of neural networks to modelling nonlinear relationships in ecology , 1996 .

[127]  F. Maytag Evolution , 1996, Arch. Mus. Informatics.

[128]  Uetz Peter,et al.  The Reptile Database , 1995 .

[129]  Anne Chenuil,et al.  Can the Cambrian explosion be inferred through molecular phylogeny , 1994 .

[130]  Richard D. De Veaux,et al.  Multicollinearity: A tale of two nonparametric regressions , 1994 .

[131]  D. Cundall,et al.  The systematic relationships of the snake genus Anomochilus , 1993 .

[132]  G. Pregill,et al.  Phylogenetic relationships of the lizard families : essays commemorating Charles L. Camp , 1989 .

[133]  D. Frost,et al.  A Phylogenetic analysis and taxonomy of iguanian lizards (Reptilia, Squamata) / , 1989 .

[134]  O. Rieppel A Review of the Origin of Snakes , 1988 .

[135]  J. Gauthier Fossil xenosaurid and anguid lizards from the early Eocene Wasatch Formation, Southeast Wyoming, and a revision of the Anguioidea , 1982 .

[136]  D. Robinson,et al.  Comparison of phylogenetic trees , 1981 .

[137]  D. Bechler,et al.  Herpetology. , 2020, Science.

[138]  J. Townsend Theoretical analysis of an alphabetic confusion matrix , 1971 .

[139]  Carl Gans,et al.  Biology of the Reptilia , 1969 .

[140]  G. Underwood A contribution to the classification of snakes , 1967 .

[141]  A. Grobman The Systematic Position of Lanthanotus and the Affinities of the Anguinomorphan Lizards.Samuel Booker McDowell, Jr. , Charles M. Bogert , 1955 .

[142]  M. Oppel Die ordnungen, familien und gattungen der reptilien als prodrom einer naturgeschichte derselben. Von Michael Oppel. , 1811 .

[143]  MultiMate,et al.  The Intramandibular Joint in Squamates , and the Phylogenetic Relationships of the Fossil Snake Pachyrhachis problematicus Haas , 2022 .