Rational design of AgGaS/ZnS/ZnS quantum dots with a near-unity photoluminescence quantum yield via double shelling scheme

[1]  Shiliang Mei,et al.  Constructing bimodal nanoprobe based on Gd:AgInS2/ZnS quantum dots for fluorometric/magnetic resonance imaging in mesenchymal stem cells , 2023, Journal of Materials Science & Technology.

[2]  Ziqing Li,et al.  Surface-Tension-Dominant Crystallization of 2D Perovskite Single Crystals for Vertically Oriented Hetero-/Homo-Structure Photodetectors. , 2022, Nano letters.

[3]  Wanlu Zhang,et al.  Aqueous synthesis of 79% efficient AgInGaS/ZnS quantum dots for extremely high color rendering white light-emitting diodes , 2022, Journal of Materials Science & Technology.

[4]  O. Oluwafemi,et al.  Controlled synthesis of silver-based ternary quantum dots with outstanding luminescence , 2022, Journal of Fluorescence.

[5]  Yan Li,et al.  Highly stable aqueous phase black phosphorus quantum dots with enhanced fluorescence property , 2022, Journal of Materials Science & Technology.

[6]  Zhe Hu,et al.  Emission tuning of highly efficient quaternary Ag-Cu-Ga-Se/ZnSe quantum dots for white light-emitting diodes. , 2021, Journal of colloid and interface science.

[7]  Abdullah M. Asiri,et al.  Orange-red, green, and blue fluorescence carbon dots for white light emitting diodes , 2020 .

[8]  Zhe Hu,et al.  Highly luminescent water-soluble AgInS2/ZnS quantum dots-hydrogel composites for warm white LEDs , 2020 .

[9]  S. Feng,et al.  One-Pot Synthesis of High-Quality AgGaS2/ZnS-based Photoluminescent Nanocrystals with Widely Tunable Band Gap. , 2020, Inorganic chemistry.

[10]  S. K. Tripathi,et al.  I-III-VI core/shell QDs: Synthesis, characterizations and applications , 2020 .

[11]  Y. Baba,et al.  Tailored Photoluminescence Properties of Ag(In,Ga)Se2 Quantum Dots for Near-Infrared In Vivo Imaging , 2020 .

[12]  Lianjun Wang,et al.  Hydrothermal synthesis of highly fluorescent Ag–In–S/ZnS core/shell quantum dots for white light-emitting diodes , 2019, Journal of Alloys and Compounds.

[13]  M. Bawendi,et al.  Zinc Thiolate Enables Bright Cu-Deficient Cu-In-S/ZnS Quantum Dots. , 2019, Small.

[14]  Lide Zhang,et al.  Synthesis of green-to-red-emitting Cu-Ga-S/ZnS core/shell quantum dots for application in white light-emitting diodes , 2019, Journal of Luminescence.

[15]  Lixin Zhu,et al.  Polyelectrolyte-Mediated Nontoxic AgGa xIn1- xS2 QDs/Low-Density Lipoprotein Nanoprobe for Selective 3D Fluorescence Imaging of Cancer Stem Cells. , 2019, ACS applied materials & interfaces.

[16]  S. Kuwabata,et al.  Wavelength-Tunable Band-Edge Photoluminescence of Nonstoichiometric Ag-In-S Nanoparticles via Ga3+ Doping. , 2018, ACS applied materials & interfaces.

[17]  Heesun Yang,et al.  Synthesis of widely emission-tunable Ag–Ga–S and its quaternary derivative quantum dots , 2018, Chemical Engineering Journal.

[18]  Ting Chen,et al.  Hydrothermal synthesis of bright and stable AgInS2 quantum dots with tunable visible emission , 2018, Journal of Luminescence.

[19]  S. Bals,et al.  Interplay between Surface Chemistry, Precursor Reactivity, and Temperature Determines Outcome of ZnS Shelling Reactions on CuInS2 Nanocrystals , 2018, Chemistry of materials : a publication of the American Chemical Society.

[20]  V. Wood,et al.  Tuning the Composition of Multicomponent Semiconductor Nanocrystals: The Case of I–III–VI Materials , 2018 .

[21]  Shaobin Wang,et al.  CuInS 2 quantum dots embedded in Bi 2 WO 6 nanoflowers for enhanced visible light photocatalytic removal of contaminants , 2018 .

[22]  N. Pradhan,et al.  From Large-Scale Synthesis to Lighting Device Applications of Ternary I-III-VI Semiconductor Nanocrystals: Inspiring Greener Material Emitters. , 2018, The journal of physical chemistry letters.

[23]  Xiaoguang Liu,et al.  Tunable emission properties of core-shell ZnCuInS-ZnS quantum dots with enhanced fluorescence intensity , 2017, Journal of Materials Science & Technology.

[24]  N. Makarov,et al.  Thick-Shell CuInS2/ZnS Quantum Dots with Suppressed "Blinking" and Narrow Single-Particle Emission Line Widths. , 2017, Nano letters.

[25]  Heesun Yang,et al.  High-Efficiency Cu–In–S Quantum-Dot-Light-Emitting Device Exceeding 7% , 2016 .

[26]  L. Manna,et al.  Forging Colloidal Nanostructures via Cation Exchange Reactions , 2016, Chemical reviews.

[27]  Sang Hyun Park,et al.  Highly bright yellow-green-emitting CuInS₂ colloidal quantum dots with core/shell/shell architecture for white light-emitting diodes. , 2015, ACS applied materials & interfaces.

[28]  Hongwu Xu,et al.  Elucidation of two giants: challenges to thick-shell synthesis in CdSe/ZnSe and ZnSe/CdS core/shell quantum dots. , 2015, Journal of the American Chemical Society.

[29]  B. J. Whitaker,et al.  Sub-bandgap emission and intraband defect-related excited-state dynamics in colloidal CuInS2/ZnS quantum dots revealed by femtosecond pump–dump–probe spectroscopy , 2014 .

[30]  V. Klimov,et al.  Controlled alloying of the core-shell interface in CdSe/CdS quantum dots for suppression of Auger recombination. , 2013, ACS nano.

[31]  S. Mourdikoudis,et al.  Oleylamine in Nanoparticle Synthesis , 2013 .

[32]  M. Amelia,et al.  Electrochemical properties of CdSe and CdTe quantum dots. , 2012, Chemical Society reviews.

[33]  Zhan'ao Tan,et al.  Highly Emissive and Color‐Tunable CuInS2‐Based Colloidal Semiconductor Nanocrystals: Off‐Stoichiometry Effects and Improved Electroluminescence Performance , 2012 .

[34]  Jaehyun Park,et al.  CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence , 2011 .

[35]  Liang Li,et al.  ZnS nanostructures: From synthesis to applications , 2011 .

[36]  Tihana Mirkovic,et al.  Emergent Properties Resulting from Type‐II Band Alignment in Semiconductor Nanoheterostructures , 2011, Advanced materials.

[37]  Liang Li,et al.  One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. , 2008, Journal of the American Chemical Society.

[38]  S. Tretiak,et al.  Type-II core/shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties. , 2007, Journal of the American Chemical Society.

[39]  B. Abbar,et al.  First-principles calculations of the structural, electronic and optical properties of CuGaS2 and AgGaS2 , 2006 .

[40]  A. P. Alivisatos,et al.  Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods. , 2002, Journal of the American Chemical Society.