On intermittent demand model optimisation and selection

[1]  John E. Boylan,et al.  An examination of the size of orders from customers, their characterisation and the implications for inventory control of slow moving items , 2003, J. Oper. Res. Soc..

[2]  R. Quintana,et al.  Lumpy demand forecasting using neural networks , 2001, PICMET '01. Portland International Conference on Management of Engineering and Technology. Proceedings Vol.1: Book of Summaries (IEEE Cat. No.01CH37199).

[3]  Brian G. Kingsman,et al.  Selecting the best periodic inventory control and demand forecasting methods for low demand items , 1997 .

[4]  Rob J Hyndman,et al.  Stochastic models underlying Croston's method for intermittent demand forecasting , 2005 .

[5]  Ralph Snyder,et al.  Forecasting sales of slow and fast moving inventories , 2002, Eur. J. Oper. Res..

[6]  Fotios Petropoulos,et al.  Empirical heuristics for improving intermittent demand forecasting , 2013, Ind. Manag. Data Syst..

[7]  Aris A. Syntetos,et al.  Spare parts management : a review of forecasting research and extensions , 2010 .

[8]  J. D. Croston Forecasting and Stock Control for Intermittent Demands , 1972 .

[9]  T. Willemain,et al.  Forecasting intermittent demand in manufacturing: a comparative evaluation of Croston's method , 1994 .

[10]  Fotios Petropoulos,et al.  A systemic view of the ADIDA framework , 2014 .

[11]  Robert Fildes,et al.  Generalising about univariate forecasting methods: Further empirical evidence , 1998 .

[12]  John E. Boylan,et al.  The accuracy of a Modified Croston procedure , 2007 .

[13]  Nikolaos Kourentzes,et al.  Intermittent demand forecasts with neural networks , 2013 .

[14]  J. Boylan,et al.  On the stock control performance of intermittent demand estimators , 2006 .

[15]  Jr. Everette S. Gardner,et al.  Evaluating forecast performance in an inventory control system , 1990 .

[16]  Douglas A. Wolfe,et al.  Nonparametric Statistical Methods , 1973 .

[17]  Brian G. Kingsman,et al.  Forecasting for the ordering and stock-holding of spare parts , 2004, J. Oper. Res. Soc..

[18]  Aris A. Syntetos,et al.  On the categorization of demand patterns , 2005, J. Oper. Res. Soc..

[19]  J. Ord,et al.  Forecasting the intermittent demand for slow-moving inventories: A modelling approach , 2012 .

[20]  R. Fildes,et al.  The effects of integrating management judgement into intermittent demand forecasts , 2009 .

[21]  J. Boylan,et al.  The accuracy of intermittent demand estimates , 2005 .

[22]  Anthony Kelly Spare parts management , 2006 .

[23]  Carl R. Schultz Forecasting and Inventory Control for Sporadic Demand Under Periodic Review , 1987 .

[24]  T. Willemain,et al.  A new approach to forecasting intermittent demand for service parts inventories , 2004 .

[25]  Leonard J. Tashman,et al.  The use of protocols to select exponential smoothing procedures: A reconsideration of forecasting competitions , 1996 .

[26]  Rob J Hyndman,et al.  Another look at measures of forecast accuracy , 2006 .

[27]  J. Boylan,et al.  On the bias of intermittent demand estimates , 2001 .

[28]  Robert Fildes,et al.  Principles of Business Forecasting , 2012 .

[29]  J. Boylan,et al.  Forecasting for Items with Intermittent Demand , 1996 .

[30]  A. Bacchetti,et al.  Spare parts classification and demand forecasting for stock control: Investigating the gap between research and practice , 2012 .

[31]  Rob J. Hyndman,et al.  A note on the categorization of demand patterns , 2006, J. Oper. Res. Soc..

[32]  John E. Boylan,et al.  Forecasting for intermittent demand: the estimation of an unbiased average , 2006, J. Oper. Res. Soc..

[33]  Anders Segerstedt,et al.  Evaluation of forecasting error measurements and techniques for intermittent demand , 2010 .

[34]  Aris A. Syntetos,et al.  Classification for forecasting and stock control: a case study , 2008, J. Oper. Res. Soc..

[35]  Fotios Petropoulos,et al.  An aggregate–disaggregate intermittent demand approach (ADIDA) to forecasting: an empirical proposition and analysis , 2011, J. Oper. Res. Soc..

[36]  Rob J Hyndman,et al.  A state space framework for automatic forecasting using exponential smoothing methods , 2002 .

[37]  Wenbin Wang,et al.  Forecasting-based SKU classification , 2013 .

[38]  Ruud H. Teunter,et al.  Intermittent demand: Linking forecasting to inventory obsolescence , 2011, Eur. J. Oper. Res..

[39]  L. Duncan,et al.  Forecasting intermittent demand: a comparative study , 2009, J. Oper. Res. Soc..

[40]  Ruud H. Teunter,et al.  On the bias of Croston's forecasting method , 2009 .

[41]  John E. Boylan,et al.  On the interaction between forecasting and stock control: The case of non-stationary demand , 2011 .

[42]  Ruud H. Teunter,et al.  Forecasting intermittent demand , 2006 .

[43]  Adel A. Ghobbar,et al.  Evaluation of forecasting methods for intermittent parts demand in the field of aviation: a predictive model , 2003, Comput. Oper. Res..

[44]  M. Z. Babai,et al.  Determining order-up-to levels under periodic review for compound binomial (intermittent) demand , 2010, Eur. J. Oper. Res..

[45]  Spyros Makridakis,et al.  The M3-Competition1 , 2000 .

[46]  M. Z. Babai,et al.  Impact of temporal aggregation on stock control performance of intermittent demand estimators: Empirical analysis , 2012 .

[47]  Rob J Hyndman,et al.  Forecasting with Exponential Smoothing: The State Space Approach , 2008 .

[48]  Anders Segerstedt,et al.  Inventory control with a modified Croston procedure and Erlang distribution , 2004 .

[49]  A. Vijaya Rao,et al.  A Comment on: Forecasting and Stock Control for Intermittent Demands , 1973 .

[50]  Rommert Dekker,et al.  An inventory control system for spare parts at a refinery: An empirical comparison of different re-order point methods , 2008, Eur. J. Oper. Res..

[51]  John E. Boylan,et al.  Judging the judges through accuracy-implication metrics: The case of inventory forecasting , 2010 .

[52]  Philip Hans Franses,et al.  The M3 competition: Statistical tests of the results , 2005 .

[53]  Ruud H. Teunter,et al.  Calculating order-up-to levels for products with intermittent demand , 2009 .

[54]  Ruud H. Teunter,et al.  A two-step method for forecasting spare parts demand using information on component repairs , 2012, Eur. J. Oper. Res..

[55]  E. S. Gardner EXPONENTIAL SMOOTHING: THE STATE OF THE ART, PART II , 2006 .