The Forced van der Pol Equation I: The Slow Flow and Its Bifurcations
暂无分享,去创建一个
John Guckenheimer | Kathleen A. Hoffman | Warren Weckesser | Kathleen Hoffman | J. Guckenheimer | K. Hoffman | Warren Weckesser
[1] M. L. Cartwright. I. Van der Pol’s Equation for Relaxation Oscillations , 1953 .
[2] Idan Segev,et al. Methods in Neuronal Modeling , 1988 .
[3] J. E. Littlewood,et al. On Non‐Linear Differential Equations of the Second Order: I. the Equation y¨ − k(1‐y2)y˙ + y = bλk cos(λl + α), k Large , 1945 .
[4] F. Takens. Constrained equations; a study of implicit differential equations and their discontinuous solutions , 1976 .
[5] M. L. Cartwbight. Balthazar Van Der Pol , 1960 .
[6] J. Grasman. Asymptotic Methods for Relaxation Oscillations and Applications , 1987 .
[7] A. Selverston,et al. Modeling the gastric mill central pattern generator of the lobster with a relaxation-oscillator network. , 1993, Journal of neurophysiology.
[8] Neil Fenichel. Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .
[9] John Guckenheimer,et al. Numerical Computation of Canards , 2000, Int. J. Bifurc. Chaos.
[10] F. Stumpers,et al. Balth. van der Pol's Work on Nonlinear Circuits , 1960 .
[11] J. E. Littlewood,et al. On Non-Linear Differential Equations of the Second Order: II. The Equation .. y + kf(y, . y + g(y, k) = p(t) = p 1 (t) + kp 2 (t); k > 0, f(y) > 1 , 1947 .
[12] J. Flaherty,et al. Frequency Entrainment of a Forced van der pol Oscillator. , 1977 .
[13] M. Levi. Qualitative Analysis of the Periodically Forced Relaxation Oscillations , 1981 .
[14] Ulrich Parlitz,et al. BIFURCATION STRUCTURE OF THE DRIVEN VAN DER POL OSCILLATOR , 1993 .
[15] P. Szmolyan,et al. Canards in R3 , 2001 .
[16] S. Smale. Diffeomorphisms with Many Periodic Points , 1965 .
[17] B. V. D. Pol,et al. Frequency Demultiplication , 1927, Nature.
[18] B. V. D. Pol. The Nonlinear Theory of Electric Oscillations , 1934 .
[19] J. Keener. Chaotic behavior in piecewise continuous difference equations , 1980 .
[20] Vladimir Igorevich Arnold,et al. Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .
[21] A. Y. Kolesov,et al. Asymptotic Methods in Singularly Perturbed Systems , 1994 .
[22] J. Tattersall,et al. The Mathematical Collaboration of M. L. Cartwright and J. E. Littlewood , 1996 .
[23] N. Levinson,et al. A Second Order Differential Equation with Singular Solutions , 1949 .
[24] É. Benoît,et al. Canards et enlacements , 1990 .
[25] John Guckenheimer,et al. The Forced van der Pol Equation II: Canards in the Reduced System , 2003, SIAM J. Appl. Dyn. Syst..
[26] Julyan H. E. Cartwright,et al. Dynamics of elastic excitable media , 1999, chao-dyn/9905035.
[27] M. L. Cartwright. On non-linear differential equations of the second order , 1949 .
[28] F. Takens. Forced oscillations and bifurcations , 2001 .
[29] V. Arnold. Dynamical systems V. Bifurcation theory and catastrophe theory , 1994 .
[30] N. K. Rozov,et al. Differential Equations with Small Parameters and Relaxation Oscillations , 1980 .
[31] J. E. Littlewood,et al. Addendum to 'On Non-Linear Differential Equations of the Second Order, II' , 1949 .
[32] R. FitzHugh. Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.
[33] J. E. Littlewood. On non-linear differential equations of the second order: IV. The general equation $$\ddot y + kf\left( y \right)\dot y + g\left( y \right) = bkp\left( \varphi \right)$$ , φ=t+α, φ=t+α , 1957 .