The complexity and construction of many faces in arrangements of lines and of segments

We show that the total number of edges ofm faces of an arrangement ofn lines in the plane isO(m2/3−δn2/3+2δ+n) for anyδ>0. The proof takes an algorithmic approach, that is, we describe an algorithm for the calculation of thesem faces and derive the upper bound from the analysis of the algorithm. The algorithm uses randomization and its expected time complexity isO(m2/3−δn2/3+2δ logn+n logn logm). If instead of lines we have an arrangement ofn line segments, then the maximum number of edges ofm faces isO(m2/3−δn2/3+2δ+nα (n) logm) for anyδ>0, whereα(n) is the functional inverse of Ackermann's function. We give a (randomized) algorithm that produces these faces and takes expected timeO(m2/3−δn2/3+2δ log+nα(n) log2n logm).

[1]  R. Canham A theorem on arrangements of lines in the plane , 1969 .

[2]  Thomas Ottmann,et al.  Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.

[3]  Endre Szemerédi,et al.  Extremal problems in discrete geometry , 1983, Comb..

[4]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[5]  Joseph O'Rourke The Signature of a Plane Curve , 1986, SIAM J. Comput..

[6]  Herbert Edelsbrunner,et al.  On the maximal number of edges of many faces in an arrangement , 1986, J. Comb. Theory, Ser. A.

[7]  Leonidas J. Guibas,et al.  Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..

[8]  Herbert Edelsbrunner,et al.  Halfplanar Range Search in Linear Space and O(n^(0.695)) Query Time , 1986, Inf. Process. Lett..

[9]  Micha Sharir,et al.  Nonlinearity of davenport—Schinzel sequences and of generalized path compression schemes , 1986, FOCS.

[10]  Raimund Seidel,et al.  Constructing Arrangements of Lines and Hyperplanes with Applications , 1986, SIAM J. Comput..

[11]  Kenneth L. Clarkson,et al.  New applications of random sampling in computational geometry , 1987, Discret. Comput. Geom..

[12]  Bernard Chazelle,et al.  Intersection of convex objects in two and three dimensions , 1987, JACM.

[13]  Richard Cole,et al.  On k-Hulls and Related Problems , 1987, SIAM J. Comput..

[14]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[15]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[16]  Micha Sharir,et al.  Separating two simple polygons by a sequence of translations , 2015, Discret. Comput. Geom..

[17]  Kenneth L. Clarkson,et al.  Combinatorial complexity bounds for arrangements of curves and surfaces , 2015, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[18]  Leonidas J. Guibas,et al.  On the general motion-planning problem with two degrees of freedom , 2015, SCG '88.

[19]  Leonidas J. Guibas,et al.  Implicitly representing arrangements of lines or segments , 2011, SCG '88.

[20]  Wolfgang Leister,et al.  Ray Tracing Algorithms — Theory and Practice , 1988 .

[21]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[22]  Micha Sharir,et al.  Planar realizations of nonlinear davenport-schinzel sequences by segments , 1988, Discret. Comput. Geom..

[23]  Pankaj K. Agarwal,et al.  A deterministic algorithm for partitioning arrangements of lines and its application , 1989, SCG '89.

[24]  Leonidas J. Guibas,et al.  The complexity of many cells in arrangements of planes and related problems , 1990, Discret. Comput. Geom..

[25]  Micha Sharir,et al.  The maximum number of ways to stabn convex nonintersecting sets in the plane is 2n−2 , 1990, Discret. Comput. Geom..

[26]  Leonidas J. Guibas,et al.  Combinatorial complexity bounds for arrangements of curves and spheres , 1990, Discret. Comput. Geom..

[27]  Micha Sharir,et al.  Triangles in space or building (and analyzing) castles in the air , 1990, Comb..