Largest eigenvalues of sparse inhomogeneous Erdős–Rényi graphs

We consider inhomogeneous Erd\H{o}s-R\'enyi graphs. We suppose that the maximal mean degree $d$ satisfies $d \ll \log n$. We characterize the asymptotic behavior of the $n^{1 - o(1)}$ largest eigenvalues of the adjacency matrix and its centred version. We prove that these extreme eigenvalues are governed at first order by the largest degrees and, for the adjacency matrix, by the nonzero eigenvalues of the expectation matrix. Our results show that the extreme eigenvalues exhibit a novel behaviour which in particular rules out their convergence to a nondegenerate point process. Together with the companion paper [3], where we analyse the extreme eigenvalues in the complementary regime $d \gg \log n$, this establishes a crossover in the behaviour of the extreme eigenvalues around $d \sim \log n$. Our proof relies on a new tail estimate for the Poisson approximation of an inhomogeneous sum of independent Bernoulli random variables, as well as on an estimate on the operator norm of a pruned graph due to Le, Levina, and Vershynin.

[1]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[2]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[3]  Andrew D. Barbour,et al.  Topics in poisson approximation , 2001 .

[4]  Gábor Lugosi,et al.  Concentration Inequalities , 2008, COLT.

[5]  Benny Sudakov,et al.  The Largest Eigenvalue of Sparse Random Graphs , 2001, Combinatorics, Probability and Computing.

[6]  Alexander Soshnikov,et al.  Poisson Statistics for the Largest Eigenvalues of Wigner Random Matrices with Heavy Tails , 2004 .

[7]  Uriel Feige,et al.  Spectral techniques applied to sparse random graphs , 2005, Random Struct. Algorithms.

[8]  Van H. Vu,et al.  Spectral norm of random matrices , 2005, STOC '05.

[9]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[10]  Antonio Auffinger,et al.  Poisson convergence for the largest eigenvalues of heavy tailed random matrices , 2007, 0710.3132.

[11]  H. Yau,et al.  Spectral Statistics of Erdős-Rényi Graphs II: Eigenvalue Spacing and the Extreme Eigenvalues , 2011, 1103.3869.

[12]  Florent Benaych-Georges,et al.  Localization and delocalization for heavy tailed band matrices , 2012, 1210.7677.

[13]  H. Yau,et al.  Spectral statistics of Erdős–Rényi graphs I: Local semicircle law , 2011, 1103.1919.

[14]  Jun Yin,et al.  A necessary and sufficient condition for edge universality of Wigner matrices , 2012, 1206.2251.

[15]  Kevin Schnelli,et al.  Local law and Tracy–Widom limit for sparse random matrices , 2016, 1605.08767.

[16]  F. Benaych-Georges,et al.  Spectral radii of sparse random matrices , 2017, 1704.02945.

[17]  Can M. Le,et al.  Concentration and regularization of random graphs , 2015, Random Struct. Algorithms.

[18]  R. Latala,et al.  The dimension-free structure of nonhomogeneous random matrices , 2017, Inventiones mathematicae.