Largest eigenvalues of sparse inhomogeneous Erdős–Rényi graphs
暂无分享,去创建一个
[1] János Komlós,et al. The eigenvalues of random symmetric matrices , 1981, Comb..
[2] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[3] Andrew D. Barbour,et al. Topics in poisson approximation , 2001 .
[4] Gábor Lugosi,et al. Concentration Inequalities , 2008, COLT.
[5] Benny Sudakov,et al. The Largest Eigenvalue of Sparse Random Graphs , 2001, Combinatorics, Probability and Computing.
[6] Alexander Soshnikov,et al. Poisson Statistics for the Largest Eigenvalues of Wigner Random Matrices with Heavy Tails , 2004 .
[7] Uriel Feige,et al. Spectral techniques applied to sparse random graphs , 2005, Random Struct. Algorithms.
[8] Van H. Vu,et al. Spectral norm of random matrices , 2005, STOC '05.
[9] Alan M. Frieze,et al. Random graphs , 2006, SODA '06.
[10] Antonio Auffinger,et al. Poisson convergence for the largest eigenvalues of heavy tailed random matrices , 2007, 0710.3132.
[11] H. Yau,et al. Spectral Statistics of Erdős-Rényi Graphs II: Eigenvalue Spacing and the Extreme Eigenvalues , 2011, 1103.3869.
[12] Florent Benaych-Georges,et al. Localization and delocalization for heavy tailed band matrices , 2012, 1210.7677.
[13] H. Yau,et al. Spectral statistics of Erdős–Rényi graphs I: Local semicircle law , 2011, 1103.1919.
[14] Jun Yin,et al. A necessary and sufficient condition for edge universality of Wigner matrices , 2012, 1206.2251.
[15] Kevin Schnelli,et al. Local law and Tracy–Widom limit for sparse random matrices , 2016, 1605.08767.
[16] F. Benaych-Georges,et al. Spectral radii of sparse random matrices , 2017, 1704.02945.
[17] Can M. Le,et al. Concentration and regularization of random graphs , 2015, Random Struct. Algorithms.
[18] R. Latala,et al. The dimension-free structure of nonhomogeneous random matrices , 2017, Inventiones mathematicae.