Geographical and genetic distances among zooplankton populations in a set of interconnected ponds: a plea for using GIS modelling of the effective geographical distance

In systems of interconnected ponds or lakes, the dispersal of zooplankton may be mediated by the active population component, with rivulets and overflows functioning as dispersal pathways. Using a landscape‐based approach, we modelled the effective geographical distance among a set of interconnected ponds (De Maten, Genk, Belgium) in a Geographic Information System (GIS) environment. The first model (the Landscape Model; LM) corrects for the presence of direct connections among ponds and was based on the existing landscape structure (i.e. network of connecting elements among ponds, travelling distance and direction of the current). A second model (the Flow Rate Model; FRM) also incorporated field data on flow rates in the connecting elements as the driving force for the passive dispersal of the active zooplankton population component. Finally, the third model (the Dispersal Rate Model; DRM) incorporated field data on zooplankton dispersal rates. An analysis of the pattern of genetic differentiation among Daphnia ambigua populations inhabiting 10 ponds in the pond complex reveals that the effective geographical distance as modelled by the flow rate and the dispersal rate model provide a better approximation of the true rates of genetic exchange among populations than mere Euclidean geographical distances or the landscape model that takes into account solely the presence of physical connections.

[1]  Nathan H. Schumaker,et al.  Using Landscape Indices to Predict Habitat Connectivity , 1996 .

[2]  L. Brendonck,et al.  Wind‐borne short‐range egg dispersal in anostracans (Crustacea: Branchiopoda) , 1999 .

[3]  J. Kruskal Nonmetric multidimensional scaling: A numerical method , 1964 .

[4]  U. Dieckmann,et al.  The evolutionary ecology of dispersal , 1999 .

[5]  K. Desender,et al.  Genotype-dependent daytime vertical-distribution of daphnia-magna in a shallow pond , 1994 .

[6]  S. Kalisz,et al.  ANT-MEDIATED SEED DISPERSAL ALTERS PATTERN OF RELATEDNESS IN A POPULATION OF TRILLIUM GRANDIFLORUM , 1999 .

[7]  K. F. Conrad,et al.  Dispersal characteristics of seven odonate species in an agricultural landscape , 1999 .

[8]  R. Levins Some Demographic and Genetic Consequences of Environmental Heterogeneity for Biological Control , 1969 .

[9]  V. W. Proctor,et al.  Further Evidence of the Passive Dispersal of Small Aquatic Organisms via the Intestinal Tract of Birds , 1965 .

[10]  A. Bohonak,et al.  Dispersal, Gene Flow, and Population Structure , 1999, The Quarterly Review of Biology.

[11]  W. Rice ANALYZING TABLES OF STATISTICAL TESTS , 1989, Evolution; international journal of organic evolution.

[12]  L. Meester Local genetic differentiation and adaptation in freshwater zooplankton populations: Patterns and processes , 1996 .

[13]  J. Bossart,et al.  Genetic estimates of population structure and gene flow: Limitations, lessons and new directions. , 1998, Trends in ecology & evolution.

[14]  F. Bonhomme,et al.  GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. , 1996 .

[15]  Pierre-Henri Gouyon,et al.  Metapopulation Genetics and the Evolution of Dispersal , 1995, The American Naturalist.

[16]  M. Whitlock,et al.  Indirect measures of gene flow and migration: FST≠1/(4Nm+1) , 1999, Heredity.

[17]  V. W. Proctor Viability of Crustacean Eggs Recovered From Ducks , 1964 .

[18]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[19]  Montgomery Slatkin,et al.  Gene Flow in Natural Populations , 1985 .

[20]  M Slatkin,et al.  Gene flow and the geographic structure of natural populations. , 1987, Science.

[21]  M. Akopian,et al.  A large reservoir as a source of zooplankton for the river: structure of the populations and influence of fish predation , 1999 .

[22]  D. Mccauley Genetic consequences of local population extinction and recolonization. , 1991, Trends in ecology & evolution.

[23]  Monica G. Turner,et al.  Landscape connectivity and population distributions in heterogeneous environments , 1997 .

[24]  P. Thrall,et al.  7. Genetics and the Spatial Ecology of Species Interactions: Th e Silene-Ustilago System , 1998 .

[25]  N. Mantel The detection of disease clustering and a generalized regression approach. , 1967, Cancer research.

[26]  M. Gilpin,et al.  Metapopulation dynamics: a brief his-tory and conceptual domain , 1991 .

[27]  B. Riddoch The adaptive significance of electrophoretic mobility in phosphoglucose isomerase (PGI) , 1993 .

[28]  F. Bonhomme,et al.  Genetix v. 3.0, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome et Populations, CNRS UPR 9060, Université Montpellier 2, Montpellier. , 1997 .

[29]  Richard J. Hobbs,et al.  Nature Conservation 2: The Role of Corridors , 1993 .

[30]  B. Richardson,et al.  Allozyme Electrophoresis: A Handbook for Animal Systematics and Population Studies , 1988 .

[31]  M. Scheffer,et al.  Estimating habitat isolation in landscape planning , 1992 .

[32]  M. Nei,et al.  F‐statistics and analysis of gene diversity in subdivided populations , 1977, Annals of human genetics.

[33]  John A. Wiens,et al.  Metapopulation dynamics and landscape ecology , 1997 .

[34]  M. Gilpin,et al.  Metapopulation Biology: Ecology, Genetics, and Evolution , 1997 .

[35]  M. Nei Analysis of gene diversity in subdivided populations. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Jana Verboom,et al.  Dispersal and habitat connectivity in complex heterogeneous landscapes: an analysis with a GIS based random walk model , 1996 .

[37]  I. Hanski Metapopulation dynamics , 1998, Nature.

[38]  L. Hansson,et al.  Dispersal and connectivity in metapopulations , 1991 .

[39]  A. Bohonak,et al.  Dispersal of the fairy shrimp Branchinecta coloradensis (Anostraca): Effects of hydroperiod and salamanders , 1999 .