Fluorescence enhancement by Au nanostructures: nanoshells and nanorods.

Metallic nanoparticles influence the quantum yield and lifetime of adjacent fluorophores in a manner dependent on the properties of the nanostructure. Here we directly compare the fluorescence enhancement of the near-infrared fluorophore IR800 by Au nanoshells (NSs) and Au nanorods (NRs), where human serum albumin (HSA) serves as a spacer layer between the nanoparticle and the fluorophore. Our measurements reveal that the quantum yield of IR800 is enhanced from approximately 7% as an isolated fluorophore to 86% in a NSs-HSA-IR800 complex and 74% in a NRs-HSA-IR800 complex. This dramatic increase in fluorescence shows tremendous potential for contrast enhancement in fluorescence-based bioimaging.

[1]  K. Drexhage Influence of a dielectric interface on fluorescence decay time , 1970 .

[2]  Ronald R. Chance,et al.  Lifetime of an emitting molecule near a partially reflecting surface , 1974 .

[3]  David H. Waldeck,et al.  Nonradiative damping of molecular electronic excited states by metal surfaces , 1985 .

[4]  S. Franzen,et al.  Probing BSA binding to citrate-coated gold nanoparticles and surfaces. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[5]  Joseph R. Lakowicz,et al.  Time-Domain Lifetime Measurements , 1999 .

[6]  Quincy L. Mattingly,et al.  Steady-state and picosecond laser fluorescence studies of nonradiative pathways in tricarbocyanine dyes Implications to the design of near-IR fluorochromes with high fluorescence efficiencies , 1994 .

[7]  J. Hafner,et al.  Plasmon resonances of a gold nanostar. , 2007, Nano letters.

[8]  Mostafa A. El-Sayed,et al.  Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method , 2003 .

[9]  Naomi J Halas,et al.  Nanoscale control of near-infrared fluorescence enhancement using Au nanoshells. , 2008, Small.

[10]  Catherine J Murphy,et al.  Seeded high yield synthesis of short Au nanorods in aqueous solution. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[11]  Joseph R Lakowicz,et al.  Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. , 2005, Analytical biochemistry.

[12]  D. M. Olive,et al.  A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models. , 2007, Analytical biochemistry.

[13]  I. Kochevar,et al.  PHOTOBLEACHING OF A CYANINE DYE IN SOLUTION AND IN MEMBRANES , 1987, Photochemistry and photobiology.

[14]  Hongwei Liao,et al.  Monitoring gold nanorod synthesis by localized surface plasmon resonance. , 2006, The journal of physical chemistry. B.

[15]  E. Hillman,et al.  Supplemental figures for All-optical anatomical coregistration for small animal molecular imaging using dynamic contrast . , 2007 .

[16]  Chad A. Mirkin,et al.  Nanostructures in Biodiagnostics , 2005 .

[17]  M. El-Sayed,et al.  Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. , 2006, The journal of physical chemistry. B.

[18]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[19]  Peter P. Edwards,et al.  A new hydrosol of gold clusters. 1. Formation and particle size variation , 1993 .

[20]  D. C. Carter,et al.  Atomic structure and chemistry of human serum albumin , 1993, Nature.

[21]  N. Halas,et al.  Mesoscopic nanoshells: geometry-dependent plasmon resonances beyond the quasistatic limit. , 2007, The Journal of chemical physics.

[22]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .

[23]  R. Weissleder A clearer vision for in vivo imaging , 2001, Nature Biotechnology.

[24]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[25]  T. Klar,et al.  Radiative and nonradiative rates of phosphors attached to gold nanoparticles , 2007 .

[26]  Yanli Liu,et al.  Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. , 2004, Bioconjugate chemistry.

[27]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[28]  Glenn P. Goodrich,et al.  Plasmonic enhancement of molecular fluorescence. , 2007, Nano letters.

[29]  M. El-Sayed,et al.  Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant , 1999 .

[30]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[31]  Hongwei Liao,et al.  Biomedical applications of plasmon resonant metal nanoparticles. , 2006, Nanomedicine.

[32]  John V. Frangioni,et al.  Organic Alternatives to Quantum Dots for Intraoperative Near-Infrared Fluorescent Sentinel Lymph Node Mapping , 2005, Molecular imaging.

[33]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[34]  Glenn P. Goodrich,et al.  Controlled texturing modifies the surface topography and plasmonic properties of Au nanoshells. , 2005, The journal of physical chemistry. B.

[35]  J. Lakowicz Radiative decay engineering: biophysical and biomedical applications. , 2001, Analytical biochemistry.

[36]  M. Davies,et al.  A scanning probe microscopy study of the physisorption and chemisorption of protein molecules onto carboxylate terminated self-assembled monolayers , 1998 .

[37]  Peter Nordlander,et al.  Plasmonic nanostructures: artificial molecules. , 2007, Accounts of chemical research.

[38]  K. Sokolov,et al.  Enhancement of molecular fluorescence near the surface of colloidal metal films. , 1998, Analytical chemistry.

[39]  P. Nordlander,et al.  The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells , 2002 .

[40]  Paul Mulvaney,et al.  Gold nanorod extinction spectra , 2006 .

[41]  Shi Ke,et al.  Quality analysis of in vivo near-infrared fluorescence and conventional gamma images acquired using a dual-labeled tumor-targeting probe. , 2005, Journal of biomedical optics.