Stabilization of multirate sampled-data linear systems

Abstract This paper considers the design of multiple-input multiple-output digital control systems characterized by a non-standard sampling mechanism. It is assumed that the various outputs of the plant are measured at different rates, which can be definitively less than the unique rate adopted for the inputs updating, or else at different times. A pole-placement problem is solved by resorting to a controller composed by a periodic state observer and a non-dynamic control law.

[1]  Bengt Lennartson,et al.  On linear optimal control with infrequent output sampling , 1981 .

[2]  S. Bittanti Deterministic and stochastic linear periodic systems , 1986 .

[3]  Patrizio Colaneri,et al.  Inertia theorems for the periodic Lyapunov difference equation and periodic Riccati difference equation , 1987 .

[4]  K. Poolla,et al.  Robust control of linear time-invariant plants using periodic compensation , 1985 .

[5]  Tomomichi Hagiwara,et al.  Pole assignment by multirate sampled-data output feedback , 1985, 1985 24th IEEE Conference on Decision and Control.

[6]  S. Bittanti,et al.  The difference periodic Ricati equation for the periodic prediction problem , 1988 .

[7]  P. Kabamba Control of Linear Systems Using Generalized Sampled-Data Hold Functions , 1987, 1987 American Control Conference.

[8]  Albert B. Chammas,et al.  Pole assignment by piecewise constant output feedback , 1979 .

[9]  G. Kranc,et al.  Input-output analysis of multirate feedback systems , 1957 .

[10]  R. Scattolini Self-tuning control of systems with infrequent and delayed output sampling , 1988 .

[11]  P. Kabamba Monodromy eigenvalue assignment in linear periodic systems , 1985, 1985 24th IEEE Conference on Decision and Control.

[12]  E. Jury,et al.  A note on multirate sampled-data systems , 1967, IEEE Transactions on Automatic Control.

[13]  R. Scattolini,et al.  Design of multirate control systems via parameter optimization , 1987, 26th IEEE Conference on Decision and Control.

[14]  R. Kálmán,et al.  A unified approach to the theory of sampling systems , 1959 .

[15]  M. Araki,et al.  Multivariable multirate sampled-data systems: State-space description, transfer characteristics, and Nyquist criterion , 1986 .

[16]  J. D. Powell,et al.  Optimal digital control of multirate systems , 1981 .

[17]  C. Sidney Burrus,et al.  A unified analysis of multirate and periodically time-varying digital filters , 1975 .

[18]  B. Francis,et al.  Stability Theory for Linear Time-Invariant Plants with Periodic Digital Controllers , 1988 .

[19]  Patrizio Colaneri,et al.  A design technique for multirate control with application to a distillation column , 1989 .