Adaptively choosing niching parameters in a PSO

Niching techniques play an important role in evolutionary algorithms. Existing niching methods often require user-specified parameters, limiting their usefulness. This paper proposes a niching method for Particle Swarm Optimisation (PSO) where population statistics are used to adaptively determine the niching parameters during a run. The proposed niching method is compared to another niching based PSO, SPSO. Our results show that the proposed adaptive niching PSO can solve difficult multimodal functions more reliably and with fewer evaluations.

[1]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[2]  Samir W. Mahfoud Crowding and Preselection Revisited , 1992, PPSN.

[3]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[4]  Frans van den Bergh,et al.  A NICHING PARTICLE SWARM OPTIMIZER , 2002 .

[5]  Alain Pétrowski,et al.  A clearing procedure as a niching method for genetic algorithms , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[6]  Xiaodong Li,et al.  Adaptively Choosing Neighbourhood Bests Using Species in a Particle Swarm Optimizer for Multimodal Function Optimization , 2004, GECCO.

[7]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[8]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[9]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[10]  Ralph R. Martin,et al.  A Sequential Niche Technique for Multimodal Function Optimization , 1993, Evolutionary Computation.

[11]  Georges R. Harik,et al.  Finding Multimodal Solutions Using Restricted Tournament Selection , 1995, ICGA.

[12]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[13]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[14]  P. John Clarkson,et al.  A Species Conserving Genetic Algorithm for Multimodal Function Optimization , 2002, Evolutionary Computation.

[15]  J. Kennedy,et al.  Stereotyping: improving particle swarm performance with cluster analysis , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[16]  Zbigniew Michalewicz,et al.  Evolutionary Computation 1 , 2018 .

[17]  Xiaodong Li,et al.  A particle swarm model for tracking multiple peaks in a dynamic environment using speciation , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[18]  Xiaodong Li,et al.  Efficient differential evolution using speciation for multimodal function optimization , 2005, GECCO '05.