Optimization of combustion kinetic models on a feasible set

Abstract We introduce a new approach to optimizing combustion models by constraining the optimization not only to parameter uncertainties but also to the uncertainties in experimental data. Doing so assures that the best-fit solution produces a model whose predictions deviate the least from the experimental targets while remaining within their experimental uncertainties. The new method is built using the uncertainty-quantification framework of Data Collaboration, and hence allows one to examine the influence of parameter and experiment uncertainties on the optimal solution, and to identify experimental targets that are most difficult to match as well as model parameter values that are likely to be questionable. The proposed methodology is flexible to formulate a variety of objectives and thus to answer seemingly heuristic questions. The technique is demonstrated employing the GRI-Mech 3.0 kinetic model and 76 experimental targets.

[1]  I. McLean,et al.  The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO+OH reaction , 1994 .

[2]  Terese Løvås,et al.  Spectral uncertainty quantification, propagation and optimization of a detailed kinetic model for ethylene combustion , 2009 .

[3]  Andreas A. Linninger,et al.  Solving kinetic inversion problems via a physically bounded Gauss - Newton (PGN) method , 2005 .

[4]  James W. Taylor,et al.  Global dynamic optimization for parameter estimation in chemical kinetics. , 2006, The journal of physical chemistry. A.

[5]  Daniel C. Haworth,et al.  Interactions among soot, thermal radiation, and NOx emissions in oxygen-enriched turbulent nonpremixed flames: a computational fluid dynamics modeling study , 2005 .

[6]  V E Beckner,et al.  Numerical simulation of a laboratory-scale turbulent V-flame. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Peter J Seiler,et al.  Numerical approaches for collaborative data processing , 2006 .

[8]  Tamás Turányi,et al.  Local and global uncertainty analyses of a methane flame model. , 2005, The journal of physical chemistry. A.

[9]  Stephen B. Pope,et al.  The influence of chemical mechanisms on PDF calculations of nonpremixed piloted jet flames , 2005 .

[10]  Michael Frenklach,et al.  Statistically rigorous parameter estimation in dynamic modeling using approximate empirical models , 1985 .

[11]  Raymond W. Walker,et al.  Evaluated kinetic data for combustion modelling supplement I , 1994 .

[12]  Andrew Packard,et al.  Sensitivity analysis of uncertainty in model prediction. , 2008, The journal of physical chemistry. A.

[13]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[14]  Michael Frenklach,et al.  Sensitivity analysis and parameter estimation in dynamic modeling of chemical kinetics , 1983 .

[15]  Michael Frenklach,et al.  Systematic optimization of a detailed kinetic model using a methane ignition example , 1984 .

[16]  Jefferson W. Tester,et al.  Incorporation of parametric uncertainty into complex kinetic mechanisms: Application to hydrogen oxidation in supercritical water , 1998 .

[17]  Derek B. Ingham,et al.  Incorporation of physical bounds on rate parameters for reaction mechanism optimization using genetic algorithms , 2003 .

[18]  Ryan Feeley,et al.  Consistency of a Reaction Dataset , 2004 .

[19]  Andrew Packard,et al.  Model discrimination using data collaboration. , 2006, The journal of physical chemistry. A.

[20]  R. Ghanem,et al.  Quantifying uncertainty in chemical systems modeling , 2004 .

[21]  Kaizar Amin,et al.  Introduction to Active Thermochemical Tables: Several “Key” Enthalpies of Formation Revisited† , 2004 .

[22]  Michael Frenklach,et al.  Transforming data into knowledge—Process Informatics for combustion chemistry , 2007 .

[23]  Andrew Packard,et al.  Chapter 6 Optimization of Reaction Models with Solution Mapping , 2007 .

[24]  Michael Frenklach,et al.  Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method—combustion of methane , 1992 .

[25]  Tamás Turányi,et al.  Uncertainty analysis of updated hydrogen and carbon monoxide oxidation mechanisms , 2004 .

[26]  C. Bamford,et al.  Comprehensive Chemical Kinetics , 1976 .

[27]  Peter J Seiler,et al.  Collaborative data processing in developing predictive models of complex reaction systems , 2004 .