In-situ reflectometry to monitor locally-catalyzed initiation and growth of nanowire assemblies

We investigate in-situ laser reflectometry for measuring the axial growth rate in chemical vapor deposition of assemblies of well-aligned vertical germanium nanowires grown epitaxially on single crystal substrates. Finite difference frequency domain optical simulations were performed in order to facilitate quantitative analysis and interpretation of the measured reflectivity data. The results show an insensitivity of the reflected intensity oscillation period to nanowire diameter and density within the range of experimental conditions investigated. Compared to previous quantitative in-situ measurements performed on III–V nanowire arrays, which showed two distinct rate regimes, we observe a constant, steady-state nanowire growth rate. Furthermore, we show that the measured reflectivity decay can be used to determine the germanium nanowire nucleation time with good precision. This technique provides an avenue to monitor growth of nanowires in a variety of materials systems and growth conditions.

[1]  Philippe Caroff,et al.  Vapor Phase Growth of Semiconductor Nanowires: Key Developments and Open Questions. , 2019, Chemical reviews.

[2]  G. Patriarche,et al.  Atomic Step Flow on a Nanofacet. , 2018, Physical review letters.

[3]  K. Dick,et al.  Realization of Wurtzite GaSb Using InAs Nanowire Templates , 2018 .

[4]  A. Laha,et al.  Monitoring the formation of GaN nanowires in molecular beam epitaxy by polarization-resolved optical reflectometry , 2018 .

[5]  Jerry Tersoff,et al.  Interface dynamics and crystal phase switching in GaAs nanowires , 2016, Nature.

[6]  Li-Wei Chou,et al.  Direct Observation of Transient Surface Species during Ge Nanowire Growth and Their Influence on Growth Stability. , 2015, Journal of the American Chemical Society.

[7]  S. T. Picraux,et al.  Vapor-liquid-solid epitaxial growth of Si1−xGex alloy nanowires: Composition dependence on precursor reactivity and morphology control for vertical forests , 2015 .

[8]  Christian Camus,et al.  In situ characterization of nanowire dimensions and growth dynamics by optical reflectance. , 2015, Nano letters.

[9]  H. Tan,et al.  Selective-area epitaxy of pure wurtzite InP nanowires: high quantum efficiency and room-temperature lasing. , 2014, Nano letters.

[10]  P. Voorhees,et al.  Twin plane re-entrant mechanism for catalytic nanowire growth. , 2014, Nano letters.

[11]  S. T. Picraux,et al.  Direct observation of nanoscale size effects in Ge semiconductor nanowire growth. , 2010, Nano letters.

[12]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[13]  P. McIntyre,et al.  Inhibiting strain-induced surface roughening: dislocation-free Ge/Si and Ge/SiGe core-shell nanowires. , 2009, Nano letters.

[14]  S. Kodambaka,et al.  Kinetics of Individual Nucleation Events Observed in Nanoscale Vapor-Liquid-Solid Growth , 2008, Science.

[15]  Dunwei Wang,et al.  Influence of Pressure on Silicon Nanowire Growth Kinetics , 2008 .

[16]  K. Lew,et al.  Diameter dependent growth rate and interfacial abruptness in vapor-liquid-solid Si/Si1-xGex heterostructure nanowires. , 2008, Nano letters.

[17]  P. McIntyre,et al.  Conditions for subeutectic growth of Ge nanowires by the vapor-liquid-solid mechanism , 2007 .

[18]  Gilles Patriarche,et al.  Why does wurtzite form in nanowires of III-V zinc blende semiconductors? , 2007, Physical review letters.

[19]  S. Kodambaka,et al.  Germanium Nanowire Growth Below the Eutectic Temperature , 2007, Science.

[20]  S. T. Picraux,et al.  In situ studies of semiconductor nanowire growth using optical reflectometry , 2006 .

[21]  G. Patriarche,et al.  Temperature conditions for GaAs nanowire formation by Au-assisted molecular beam epitaxy , 2006, Nanotechnology.

[22]  Y. Nishi,et al.  Nature of germanium nanowire heteroepitaxy on silicon substrates , 2006 .

[23]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[24]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[25]  C Gough,et al.  Introduction to Solid State Physics (6th edn) , 1986 .

[26]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[27]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .