Reed-Muller Like Canonic Forms for Multivalued Functions

In this correspondence we show the existence of a Reed-Muller like expansion for multivalued functions. We establish that any m-variable, N-valued function [mi]f(x<inf>m</inf>,x<inf>m-1</inf>,...x<inf>1</inf>[/mi]) can be expressed as [mi]C<inf>o</inf>+ C<inf>1</inf>x<inf>1</inf>+ *--+ + C<inf>N</inf><sup>m</sup>_<inf>1</inf>x<inf>m</inf><sup>N-1</sup>x<inf>m-1</inf><sup>N-1</sup>x<inf>1</inf><sup>N-1</sup>[/mi]. A matrix method for determining the coefficients of these expansions is presented. The problem of finding minimal expression for a given function is discussed. Finally, we present a new technique for realizing multiple output functions.

[1]  J. Gazalé, Les structures de commutation àm valeurs et les calculatrices numériques. 78 S. m. 35 Abb. Paris 1959. Gauthier-Villars. Preis brosch. $ 3,04 , 1960 .

[2]  C. Y. Lee,et al.  Several-valued combinational switching circuits , 1956, Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics.

[3]  N. Rescher Review: J. D. Swift, Algebraic Properties of n-Valued Propositional Calculi , 1953 .

[4]  Irving S. Reed,et al.  A class of multiple-error-correcting codes and the decoding scheme , 1954, Trans. IRE Prof. Group Inf. Theory.

[5]  Tadao Kasami,et al.  New generalizations of the Reed-Muller codes-I: Primitive codes , 1968, IEEE Trans. Inf. Theory.

[6]  Paul E. Wood Switching Theory , 1968 .

[7]  Emil L. Post Introduction to a General Theory of Elementary Propositions , 1921 .

[8]  T. Traczyk Aximos and some properties of Post algebras , 1963 .

[9]  Michael Yoeli NON-BINARY SWITCHING THEORY. , 1968 .

[10]  J. D. Swift,et al.  Algebraic Properties of N-Valued Propositional Calculi , 1952 .

[11]  David E. Muller,et al.  Application of Boolean algebra to switching circuit design and to error detection , 1954, Trans. I R E Prof. Group Electron. Comput..

[12]  Amar Mukhopadhyay Recent developments in switching theory , 1971 .

[13]  G. Epstein The lattice theory of Post algebras , 1960 .

[14]  Amar Mukhopadhyay,et al.  Minimization of Exclusive or and Logical Equivalence Switching Circuits , 1970, IEEE Transactions on Computers.

[15]  Karl S. Menger,et al.  A Transform for Logic Networks , 1969, IEEE Transactions on Computers.

[16]  John Milnor,et al.  Introduction to Algebraic K-Theory. (AM-72), Volume 72 , 1972 .