Human cardiac troponin complex. Structure and functions

Troponin complex is a component of skeletal and cardiac muscle thin filaments. It consists of three subunits — troponin I, T, and C, and it plays a crucial role in muscle activity, connecting changes in intracellular Ca2+ concentration with generation of contraction. In spite of more than 40 years of studies, many aspects of troponin functioning are still not completely understood, and several models describing the mechanism of muscle contraction exist. Being a key factor in the regulation of cardiac muscle contraction, troponin complex is utilized in medicine as a target for some cardiotonic drugs used in the treatment of heart failure. A number of mutations in troponin subunits are associated with development of different types of cardiomyopathy. Moreover, for the last 25 years cardiac isoforms of troponin I and T have been widely used for immunochemical diagnostics of pathologies associated with cardiomyocyte death (myocardial infarction, myocardial trauma, and others). This review summarizes the existing evidence on the structure and function of troponin complex subunits, their role in the regulation of cardiac muscle contraction, and their clinical applications.

[1]  G. Dhoot,et al.  Identification and pattern of expression of a developmental isoform of troponin I in chicken and rat cardiac muscle , 1989, Journal of Muscle Research & Cell Motility.

[2]  R. Solaro,et al.  Protein Kinase C ζ , 2007, Journal of Biological Chemistry.

[3]  J. Jin,et al.  Structure of the NH2-terminal variable region of cardiac troponin T determines its sensitivity to restrictive cleavage in pathophysiological adaptation. , 2011, Archives of biochemistry and biophysics.

[4]  J. Lin,et al.  Isolation and characterization of cDNA clones encoding embryonic and adult isoforms of rat cardiac troponin T. , 1989, The Journal of biological chemistry.

[5]  J. Haselgrove,et al.  X-ray evidence for radial cross-bridge movement and for the sliding filament model in actively contracting skeletal muscle. , 1973, Journal of molecular biology.

[6]  C. Nan,et al.  Transcription factor Yin Yang 1 represses fetal troponin I gene expression in neonatal myocardial cells. , 2009, Biochemical and biophysical research communications.

[7]  L. Meggs,et al.  Angiotensin II promotes glucose-induced activation of cardiac protein kinase C isozymes and phosphorylation of troponin I. , 2001, Diabetes.

[8]  P. D. del Nido,et al.  Ischemic dysfunction in transgenic mice expressing troponin I lacking protein kinase C phosphorylation sites. , 2001, American journal of physiology. Heart and circulatory physiology.

[9]  P. Barton,et al.  Structure and regulation of human troponin genes , 2004, Molecular and Cellular Biochemistry.

[10]  C. Villar-Palasi,et al.  Purification and properties of dog cardiac troponin T kinase. , 1981, The Journal of biological chemistry.

[11]  A. Borbély,et al.  Protein Kinase C Contributes to the Maintenance of Contractile Force in Human Ventricular Cardiomyocytes* , 2009, Journal of Biological Chemistry.

[12]  G. Yan,et al.  Changes in extracellular and intracellular pH in ischemic rabbit papillary muscle. , 1992, Circulation research.

[13]  B. Sykes,et al.  Structures of the troponin C regulatory domains in the apo and calcium-saturated states , 1995, Nature Structural Biology.

[14]  N. Toyota,et al.  Differentiation of troponin in cardiac and skeletal muscles in chicken embryos as studied by immunofluorescence microscopy , 1981, The Journal of cell biology.

[15]  P. Barton,et al.  Assignment of the human fast skeletal muscle troponin C gene (TNNC2) between D20S721 and GCT10F11 on chromosome 20 by somatic cell hybrid analysis , 1997, Annals of human genetics.

[16]  W. A. King,et al.  Solution structure of the chicken skeletal muscle troponin complex via small-angle neutron and X-ray scattering. , 2005, Journal of molecular biology.

[17]  B. Sykes,et al.  An interplay between protein disorder and structure confers the Ca2+ regulation of striated muscle. , 2006, Journal of molecular biology.

[18]  Bin Wei,et al.  Troponin T isoforms and posttranscriptional modifications: Evolution, regulation and function. , 2011, Archives of biochemistry and biophysics.

[19]  E. Homsher,et al.  Phosphorylation or Glutamic Acid Substitution at Protein Kinase C Sites on Cardiac Troponin I Differentially Depress Myofilament Tension and Shortening Velocity* , 2003, The Journal of Biological Chemistry.

[20]  M. Yacoub,et al.  Molecular cloning of human cardiac troponin T isoforms: expression in developing and failing heart. , 1995, Journal of molecular and cellular cardiology.

[21]  Barry J Maron,et al.  Novel frameshift mutation in Troponin C (TNNC1) associated with hypertrophic cardiomyopathy and sudden death , 2011, Cardiology in the Young.

[22]  J. Jin,et al.  Conformational modulation of troponin T by configuration of the NH2-terminal variable region and functional effects. , 1998, Biochemistry.

[23]  K. McDonald,et al.  Protein kinase C depresses cardiac myocyte power output and attenuates myofilament responses induced by protein kinase A , 2012, Journal of Muscle Research and Cell Motility.

[24]  S Ebashi,et al.  Control of muscle contraction , 1969, Quarterly Reviews of Biophysics.

[25]  S. Sadayappan,et al.  Phosphorylation and function of cardiac myosin binding protein-C in health and disease. , 2010, Journal of molecular and cellular cardiology.

[26]  P. Bramlage,et al.  Cardiac troponin I sense‐antisense RNA duplexes in the myocardium , 2002, Journal of cellular biochemistry.

[27]  J. V. Van Eyk,et al.  The C Terminus of Cardiac Troponin I Stabilizes the Ca2+-Activated State of Tropomyosin on Actin Filaments , 2010, Circulation research.

[28]  I. M. Robertson,et al.  Interaction between the regulatory domain of cardiac troponin C and the acidosis-resistant cardiac troponin I A162H. , 2013, Cardiovascular research.

[29]  J. Potter,et al.  A structural role for the Ca2+-Mg2+ sites on troponin C in the regulation of muscle contraction. Preparation and properties of troponin C depleted myofibrils. , 1982, The Journal of biological chemistry.

[30]  H. Watkins,et al.  Hypertrophic cardiomyopathy:a paradigm for myocardial energy depletion. , 2003, Trends in genetics : TIG.

[31]  E. Morris,et al.  Troponin-tropomyosin interactions. Fluorescence studies of the binding of troponin, troponin T, and chymotryptic troponin T fragments to specifically labeled tropomyosin. , 1984, Biochemistry.

[32]  S. Lehrer The 3-state model of muscle regulation revisited: is a fourth state involved? , 2011, Journal of Muscle Research and Cell Motility.

[33]  B. H. Crawford,et al.  Dephosphorylation specificities of protein phosphatase for cardiac troponin I, troponin T, and sites within troponin T , 2006, International journal of biological sciences.

[34]  A. Roher,et al.  The amino acid sequence of human cardiac troponin‐C , 1986, Muscle & nerve.

[35]  Steven B Marston,et al.  Troponin phosphorylation and regulatory function in human heart muscle: dephosphorylation of Ser23/24 on troponin I could account for the contractile defect in end-stage heart failure. , 2007, Journal of molecular and cellular cardiology.

[36]  Dahua Zhang,et al.  Protein kinase C and A sites on troponin I regulate myofilament Ca2+ sensitivity and ATPase activity in the mouse myocardium , 2003, The Journal of physiology.

[37]  A. Franklin,et al.  The C-terminus of troponin T is essential for maintaining the inactive state of regulated actin. , 2012, Biophysical journal.

[38]  S. Morimoto,et al.  Role of troponin I isoform switching in determining the pH sensitivity of Ca(2+) regulation in developing rabbit cardiac muscle. , 2000, Biochemical and biophysical research communications.

[39]  M. Yacoub,et al.  Isolation and characterization of the human cardiac troponin I gene (TNNI3). , 1996, Genomics.

[40]  S. Diriong,et al.  Human cardiac troponin T: cloning and expression of new isoforms in the normal and failing heart. , 1995, Circulation research.

[41]  D. Bers,et al.  Ca channels in cardiac myocytes: structure and function in Ca influx and intracellular Ca release. , 1999, Cardiovascular research.

[42]  D. Fabbro,et al.  Phosphorylation Specificities of Protein Kinase C Isozymes for Bovine Cardiac Troponin I and Troponin T and Sites within These Proteins and Regulation of Myofilament Properties* , 1996, The Journal of Biological Chemistry.

[43]  B. Wolska,et al.  Troponin I phosphorylation plays an important role in the relaxant effect of beta-adrenergic stimulation in mouse hearts. , 2004, Cardiovascular research.

[44]  S. Perry,et al.  Distribution of polymorphic forms of troponin components and tropomyosin in skeletal muscle , 1979, Nature.

[45]  Kenji Takahashi,et al.  Determination of the complete amino acid sequence of bovine cardiac troponin C. , 1976 .

[46]  A. Annila,et al.  Binding of Levosimendan, a Calcium Sensitizer, to Cardiac Troponin C* , 2001, The Journal of Biological Chemistry.

[47]  H. Katus,et al.  Cardiac Troponin T. , 2013, Circulation journal : official journal of the Japanese Circulation Society.

[48]  L. Heilmeyer,et al.  Pattern formation on cardiac troponin I by consecutive phosphorylation and dephosphorylation. , 1995, European journal of biochemistry.

[49]  R. Schwinger,et al.  Beneficial effects of the Ca(2+) sensitizer levosimendan in human myocardium. , 2002, American journal of physiology. Heart and circulatory physiology.

[50]  M. Geeves,et al.  Cooperativity and switching within the three-state model of muscle regulation. , 1999, Biochemistry.

[51]  P. Rosevear,et al.  NMR analysis of cardiac troponin C‐troponin I complexes: effects of phosphorylation , 1999, FEBS letters.

[52]  A. Remppis,et al.  Development and in vitro characterization of a new immunoassay of cardiac troponin T. , 1992, Clinical chemistry.

[53]  R. Hodges,et al.  Mapping of a second actin-tropomyosin and a second troponin C binding site within the C terminus of troponin I, and their importance in the Ca2+-dependent regulation of muscle contraction. , 1997, Journal of molecular biology.

[54]  B. Sykes,et al.  Structure of Cardiac Muscle Troponin C Unexpectedly Reveals a Closed Regulatory Domain* , 1997, The Journal of Biological Chemistry.

[55]  B. Wolska,et al.  Expression of slow skeletal troponin I in adult transgenic mouse heart muscle reduces the force decline observed during acidic conditions , 2001, The Journal of physiology.

[56]  J. Potter,et al.  Cardiac troponin I phosphorylation increases the rate of cardiac muscle relaxation. , 1995, Circulation research.

[57]  X. Graña,et al.  PP2A holoenzymes negatively and positively regulate cell cycle progression by dephosphorylating pocket proteins and multiple CDK substrates. , 2012, Gene.

[58]  I. M. Robertson,et al.  Interaction of cardiac troponin with cardiotonic drugs: a structural perspective. , 2008, Biochemical and biophysical research communications.

[59]  P. Pfleiderer,et al.  Raf-1: a novel cardiac troponin T kinase , 2009, Journal of Muscle Research and Cell Motility.

[60]  P. D. de Tombe,et al.  Functional Effects of Rho-Kinase–Dependent Phosphorylation of Specific Sites on Cardiac Troponin , 2005, Circulation research.

[61]  C. Balke,et al.  Tyrosine Phosphorylation Modifies Protein Kinase C δ-dependent Phosphorylation of Cardiac Troponin I* , 2008, Journal of Biological Chemistry.

[62]  S. Steinberg Cardiac actions of protein kinase C isoforms. , 2012, Physiology.

[63]  M. Endoh The therapeutic potential of novel cardiotonic agents , 2003, Expert opinion on investigational drugs.

[64]  B. Pan,et al.  Calcium-binding properties of troponin C in detergent-skinned heart muscle fibers. , 1987, The Journal of biological chemistry.

[65]  P. Collinson Republished: Sensitive troponin assays , 2011, Postgraduate Medical Journal.

[66]  S. Schwartz,et al.  A model of calcium activation of the cardiac thin filament. , 2011, Biochemistry.

[67]  J. Ingwall,et al.  Histidine button engineered into cardiac troponin I protects the ischemic and failing heart , 2006, Nature Medicine.

[68]  M. Avkiran,et al.  Regulation of protein kinase D activity in adult myocardium: novel counter-regulatory roles for protein kinase Cepsilon and protein kinase A. , 2007, Journal of molecular and cellular cardiology.

[69]  E. Homsher,et al.  Regulation of contraction in striated muscle. , 2000, Physiological reviews.

[70]  R. Hodges,et al.  Photochemical cross-linking between rabbit skeletal troponin and alpha-tropomyosin. Attachment of the photoaffinity probe N-(4-azidobenzoyl-[2-3H]glycyl)-S-(2-thiopyridyl)-cysteine to cysteine 190 of alpha-tropomyosin. , 1982, The Journal of biological chemistry.

[71]  J. M. Robinson,et al.  Switching of troponin I: Ca(2+) and myosin-induced activation of heart muscle. , 2004, Journal of molecular biology.

[72]  Kittipong Tachampa,et al.  Myofilament length dependent activation. , 2010, Journal of molecular and cellular cardiology.

[73]  B. Kay,et al.  Molecular basis of human cardiac troponin T isoforms expressed in the developing, adult, and failing heart. , 1995, Circulation research.

[74]  G. Lanfranchi,et al.  Fine mapping of five human skeletal muscle genes: alpha-tropomyosin, beta-tropomyosin, troponin-I slow-twitch, troponin-I fast-twitch, and troponin-C fast. , 1997, Biochemical and biophysical research communications.

[75]  A. Singer,et al.  Diagnostic accuracy of a point-of-care troponin I assay for acute myocardial infarction within 3 hours after presentation in early presenters to the emergency department with chest pain. , 2012, American heart journal.

[76]  S. Perry Troponin T: genetics, properties and function , 1998, Journal of Muscle Research & Cell Motility.

[77]  Qingge Xu,et al.  Phosphorylation, but not alternative splicing or proteolytic degradation, is conserved in human and mouse cardiac troponin T. , 2011, Biochemistry.

[78]  A. Chen,et al.  Conformational modulation of slow skeletal muscle troponin T by an NH(2)-terminal metal-binding extension. , 2000, American journal of physiology. Cell physiology.

[79]  Jonathan P. Davis,et al.  Cardiac troponin T isoforms affect the Ca(2+) sensitivity of force development in the presence of slow skeletal troponin I: insights into the role of troponin T isoforms in the fetal heart. , 2004, The Journal of biological chemistry.

[80]  R. Mamidi,et al.  Interplay between the overlapping ends of tropomyosin and the N terminus of cardiac troponin T affects tropomyosin states on actin , 2013, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[81]  J. Lin,et al.  Complete nucleotide sequence and structural organization of rat cardiac troponin T gene. A single gene generates embryonic and adult isoforms via developmentally regulated alternative splicing. , 1992, Journal of molecular biology.

[82]  J. Jin,et al.  Localization of the two tropomyosin-binding sites of troponin T. , 2010, Archives of biochemistry and biophysics.

[83]  J. Potter,et al.  A Mutation in TNNC1-encoded Cardiac Troponin C, TNNC1-A31S, Predisposes to Hypertrophic Cardiomyopathy and Ventricular Fibrillation* , 2012, The Journal of Biological Chemistry.

[84]  L. Smillie,et al.  Binding of troponin-T fragments to several types of tropomyosin. Sensitivity to Ca2+ in the presence of troponin-C. , 1982, The Journal of biological chemistry.

[85]  A. Moir,et al.  Structure-function relationships in cardiac troponin T. , 1989, Biochimica et biophysica acta.

[86]  K. Strang,et al.  Beta-adrenergic receptor stimulation increases unloaded shortening velocity of skinned single ventricular myocytes from rats. , 1994, Circulation research.

[87]  V. Risnik,et al.  Some properties of the nucleotide-binding site of troponin T kinase-casein kinase type II from skeletal muscle. , 1984, Biochimica et biophysica acta.

[88]  Ying Ge,et al.  Augmented Phosphorylation of Cardiac Troponin I in Hypertensive Heart Failure* , 2011, The Journal of Biological Chemistry.

[89]  M. Yacoub,et al.  Genomic organisation, alternative splicing and polymorphisms of the human cardiac troponin T gene. , 1998, Journal of molecular and cellular cardiology.

[90]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[91]  W. Dong,et al.  Effects of protein kinase A phosphorylation on signaling between cardiac troponin I and the N-terminal domain of cardiac troponin C. , 1997, Biochemistry.

[92]  L. Walker,et al.  A non-equilibrium isoelectric focusing method to determine states of phosphorylation of cardiac troponin I: identification of Ser-23 and Ser-24 as significant sites of phosphorylation by protein kinase C. , 2005, Journal of molecular and cellular cardiology.

[93]  J. Chalovich,et al.  Negative charges at protein kinase C sites of troponin I stabilize the inactive state of actin. , 2008, Biophysical journal.

[94]  S. Schiaffino,et al.  Troponin I switching in the developing heart. , 1989, The Journal of biological chemistry.

[95]  K. Nakada,et al.  Developmental Changes of Cardiac and Slow Skeletal Muscle Troponin T Expression in Chicken Cardiac and Skeletal Muscles , 2002, Zoological science.

[96]  R. Moss,et al.  Impaired cardiomyocyte relaxation and diastolic function in transgenic mice expressing slow skeletal troponin I in the heart , 1999, The Journal of physiology.

[97]  D. Kass,et al.  Frequency- and Afterload-Dependent Cardiac Modulation In Vivo by Troponin I With Constitutively Active Protein Kinase A Phosphorylation Sites , 2004, Circulation research.

[98]  J. Taskinen,et al.  A model for human cardiac troponin C and for modulation of its Ca2+ affinity by drugs , 1991, Proteins.

[99]  M. Yacoub,et al.  Troponin I gene expression during human cardiac development and in end-stage heart failure. , 1993, Circulation research.

[100]  D. Parry,et al.  Structural role of tropomyosin in muscle regulation: analysis of the x-ray diffraction patterns from relaxed and contracting muscles. , 1973, Journal of molecular biology.

[101]  J. Metzger,et al.  Sarcomere Thin Filament Regulatory Isoforms , 2003, The Journal of Biological Chemistry.

[102]  R Craig,et al.  Steric-model for activation of muscle thin filaments. , 1997, Journal of molecular biology.

[103]  I. Ohtsuki,et al.  Roles of troponin isoforms in pH dependence of contraction in rabbit fast and slow skeletal and cardiac muscles. , 1999, Journal of biochemistry.

[104]  F. Hofmann,et al.  Sites phosphorylated in bovine cardiac troponin T and I. Characterization by 31P-NMR spectroscopy and phosphorylation by protein kinases. , 1990, European journal of biochemistry.

[105]  T. Irving,et al.  Troponin I in the murine myocardium: influence on length-dependent activation and interfilament spacing. , 2003, The Journal of physiology.

[106]  A. Gomes,et al.  Mutations in Troponin that cause HCM, DCM AND RCM: what can we learn about thin filament function? , 2010, Journal of molecular and cellular cardiology.

[107]  W. Dong,et al.  Structural Dynamics of C-domain of Cardiac Troponin I Protein in Reconstituted Thin Filament* , 2011, The Journal of Biological Chemistry.

[108]  T Sugano,et al.  [Heart rhythm]. , 2020, Nihon seirigaku zasshi. Journal of the Physiological Society of Japan.

[109]  M. Tanokura,et al.  Structural basis for Ca2+-regulated muscle relaxation at interaction sites of troponin with actin and tropomyosin. , 2005, Journal of molecular biology.

[110]  B. Cummins,et al.  Cardiac-specific troponin-I radioimmunoassay in the diagnosis of acute myocardial infarction. , 1987, American heart journal.

[111]  R. Moss,et al.  Protein kinase A–induced myofilament desensitization to Ca2+ as a result of phosphorylation of cardiac myosin–binding protein C , 2010, The Journal of general physiology.

[112]  A. Murphy,et al.  Troponin I isoform expression in human heart. , 1991, Circulation research.

[113]  Stephen H. Smith,et al.  Left Ventricular and Myocardial Function in Mice Expressing Constitutively Pseudophosphorylated Cardiac Troponin I , 2009, Circulation research.

[114]  J. Kuo,et al.  Phosphorylation of cardiac troponin inhibitory subunit (troponin I) and tropomyosin-binding subunit (troponin T) by cardiac phospholipid-sensitive Ca2+-dependent protein kinase. , 1983, The Biochemical journal.

[115]  P. D. de Tombe,et al.  Cardiac Troponin I Threonine 144: Role in Myofilament Length–Dependent Activation , 2007, Circulation research.

[116]  W. Kabsch,et al.  Atomic model of the actin filament , 1990, Nature.

[117]  Zhi-Bin Yu,et al.  Restricted N‐terminal truncation of cardiac troponin T: a novel mechanism for functional adaptation to energetic crisis , 2008, The Journal of physiology.

[118]  T. Cooper,et al.  Dynamic antagonism between ETR-3 and PTB regulates cell type-specific alternative splicing. , 2002, Molecular cell.

[119]  Kari Kuulasmaa,et al.  World Health Organization definition of myocardial infarction: 2008-09 revision. , 2011, International journal of epidemiology.

[120]  A. Moir,et al.  Phosphorylation of troponin I and the inotropic effect of adrenaline in the perfused rabbit heart , 1976, Nature.

[121]  J. Metzger,et al.  Slow skeletal troponin I gene transfer, expression, and myofilament incorporation enhances adult cardiac myocyte contractile function. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[122]  K. Holmes,et al.  An atomic model of the unregulated thin filament obtained by X-ray fiber diffraction on oriented actin-tropomyosin gels. , 1995, Journal of molecular biology.

[123]  Ying Ge,et al.  Single amino acid sequence polymorphisms in rat cardiac troponin revealed by top–down tandem mass spectrometry , 2009, Journal of Muscle Research and Cell Motility.

[124]  R. Clayton,et al.  Acidosis in models of cardiac ventricular myocytes , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[125]  R. Vaughan-Jones,et al.  Effect of repetitive activity upon intracellular pH, sodium and contraction in sheep cardiac Purkinje fibres. , 1988, The Journal of physiology.

[126]  J. Lin,et al.  Comparative studies on the expression patterns of three troponin T genes during mouse development , 2001, The Anatomical record.

[127]  Shin'ichi Ishiwata,et al.  Troponin and Titin Coordinately Regulate Length-dependent Activation in Skinned Porcine Ventricular Muscle , 2008, The Journal of general physiology.

[128]  M. Yacoub,et al.  Human cardiac troponin T: identification of fetal isoforms and assignment of the TNNT2 locus to chromosome 1q. , 1994, Genomics.

[129]  Eloisa Arbustini,et al.  Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. , 2007, European heart journal.

[130]  J. Potter,et al.  Phosphorylation of Both Serine Residues in Cardiac Troponin I Is Required to Decrease the Ca2+ Affinity of Cardiac Troponin C (*) , 1995, The Journal of Biological Chemistry.

[131]  A. M. Gordon,et al.  Kinetic Studies of Calcium Binding to the Regulatory Site of Troponin C from Cardiac Muscle (*) , 1996, The Journal of Biological Chemistry.

[132]  C. Murakami,et al.  Analysis of the sarcomere protein gene mutation on cardiomyopathy - Mutations in the cardiac troponin I gene. , 2010, Legal medicine.

[133]  A. von Eckardstein,et al.  Sensible use of high-sensitivity troponin assays. , 2013, Methods in molecular biology.

[134]  N. Toyota Expression of troponin C genes during development in the chicken. , 1993, The International journal of developmental biology.

[135]  R. Solaro,et al.  Changes in myofibrillar activation and troponin C Ca2+ binding associated with troponin T isoform switching in developing rabbit heart. , 1990, Circulation research.

[136]  R. Solaro,et al.  Integration of troponin I phosphorylation with cardiac regulatory networks. , 2013, Circulation research.

[137]  S. Schiaffino,et al.  Cardiac troponin T in developing, regenerating and denervated rat skeletal muscle. , 1990, Development.

[138]  L. Tobacman,et al.  Troponin Regulatory Function and Dynamics Revealed by H/D Exchange-Mass Spectrometry* , 2009, The Journal of Biological Chemistry.

[139]  M. Villain,et al.  Conformation of the Regulatory Domain of Cardiac Muscle Troponin C in Its Complex with Cardiac Troponin I* , 1999, The Journal of Biological Chemistry.

[140]  A. Wear CIRCULATION , 1964, The Lancet.

[141]  D. Heeley,et al.  Mechanism of Regulation of Native Cardiac Muscle Thin Filaments by Rigor Cardiac Myosin-S1 and Calcium* , 2010, The Journal of Biological Chemistry.

[142]  J. Potter,et al.  The calcium and magnesium binding sites on cardiac troponin and their role in the regulation of myofibrillar adenosine triphosphatase. , 1980, The Journal of biological chemistry.

[143]  N. Kalkkinen,et al.  Binding of a new Ca2+ sensitizer, levosimendan, to recombinant human cardiac troponin C. A molecular modelling, fluorescence probe, and proton nuclear magnetic resonance study. , 1994, The Journal of biological chemistry.

[144]  B. Sykes,et al.  Is there nascent structure in the intrinsically disordered region of troponin I? , 2011, Proteins.

[145]  Siegfried Labeit,et al.  PKC Phosphorylation of Titin’s PEVK Element: A Novel and Conserved Pathway for Modulating Myocardial Stiffness , 2009, Circulation research.

[146]  T. Cooper,et al.  Dynamic balance between activation and repression regulates pre‐mRNA alternative splicing during heart development , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[147]  J. Kuo,et al.  Protein kinase C phosphorylation of cardiac troponin I or troponin T inhibits Ca2(+)-stimulated actomyosin MgATPase activity. , 1991, The Journal of biological chemistry.

[148]  J. Leiden,et al.  Skeletal troponin C reduces contractile sensitivity to acidosis in cardiac myocytes from transgenic mice. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[149]  D. Ward,et al.  Characterization of the interaction between the N-terminal extension of human cardiac troponin I and troponin C. , 2004, Biochemistry.

[150]  J. Leiden,et al.  Phosphorylation of Troponin I by Protein Kinase A Accelerates Relaxation and Crossbridge Cycle Kinetics in Mouse Ventricular Muscle , 2001, Circulation research.

[151]  W. Lehman,et al.  Tropomyosin positions in regulated thin filaments revealed by cryoelectron microscopy. , 1999, Biophysical journal.

[152]  A. Tsaturyan,et al.  Molecular mechanism of actin-myosin motor in muscle , 2011, Biochemistry (Moscow).

[153]  T. Cooper,et al.  The CELF Family of RNA Binding Proteins Is Implicated in Cell-Specific and Developmentally Regulated Alternative Splicing , 2001, Molecular and Cellular Biology.

[154]  R. Solaro,et al.  The N-terminal region of troponin T is essential for the maximal activation of rat cardiac myofilaments. , 1999, Journal of molecular and cellular cardiology.

[155]  Levi C. T. Pierce,et al.  Dynamics and Calcium Association to the N-Terminal Regulatory Domain of Human Cardiac Troponin C: A Multiscale Computational Study , 2012, The journal of physical chemistry. B.

[156]  Ying Ge,et al.  A preferred AMPK phosphorylation site adjacent to the inhibitory loop of cardiac and skeletal troponin I , 2011, Protein science : a publication of the Protein Society.

[157]  L. Smillie,et al.  Effects of troponin-I plus-C on the binding of troponin-T and its fragments to alpha-tropomyosin. Ca2+ sensitivity and cooperativity. , 1983, The Journal of biological chemistry.

[158]  Ying Ge,et al.  In vivo phosphorylation site mapping in mouse cardiac troponin I by high resolution top-down electron capture dissociation mass spectrometry: Ser22/23 are the only sites basally phosphorylated. , 2009, Biochemistry.

[159]  L. Kedes,et al.  Differential expression of slow and fast skeletal muscle troponin C. Slow skeletal muscle troponin C is expressed in human fibroblasts. , 1988, Journal of molecular biology.

[160]  S. Stagg,et al.  Ca2+-induced Conformational Transition in the Inhibitory and Regulatory Regions of Cardiac Troponin I* , 2003, The Journal of Biological Chemistry.

[161]  K. Murray,et al.  Molecular heterogeneity of protein kinase C expression in human ventricle. , 2000, Cardiovascular research.

[162]  S. Ishiwata,et al.  Protein kinase A–dependent modulation of Ca2+ sensitivity in cardiac and fast skeletal muscles after reconstitution with cardiac troponin , 2009, The Journal of general physiology.

[163]  L. Kedes,et al.  Cloning, structural analysis, and expression of the human slow twitch skeletal muscle/cardiac troponin C gene. , 1990, The Journal of biological chemistry.

[164]  E. White,et al.  The Frank–Starling mechanism in vertebrate cardiac myocytes , 2008, Journal of Experimental Biology.

[165]  M. Tanokura,et al.  Chymotryptic subfragments of troponin T from rabbit skeletal muscle. I. Determination of the primary structure. , 1982, Journal of biochemistry.

[166]  F. Apple,et al.  Cardiac troponin-I is not expressed in fetal and healthy or diseased adult human skeletal muscle tissue. , 1995, Clinical chemistry.

[167]  B. Sykes,et al.  Structure and Dynamics of the C-domain of Human Cardiac Troponin C in Complex with the Inhibitory Region of Human Cardiac Troponin I* , 2003, Journal of Biological Chemistry.

[168]  Richard Barnett Diabetes , 1904, The Lancet.

[169]  J. V. Van Eyk,et al.  Dephosphorylation of cardiac proteins in vitro – a matter of phosphatase specificity , 2012, Proteomics.

[170]  M. Brotto,et al.  Troponin T isoforms alter the tolerance of transgenic mouse cardiac muscle to acidosis. , 2004, Archives of biochemistry and biophysics.

[171]  J. H. Collins,et al.  Bovine cardiac troponin T: amino acid sequences of the two isoforms. , 1987, Biochemistry.

[172]  L. Lundin,et al.  Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. , 1993, Genomics.

[173]  D G Vassylyev,et al.  Crystal structure of troponin C in complex with troponin I fragment at 2.3-A resolution. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[174]  J. Potter,et al.  Troponin, tropomyosin, and actin interactions in the Ca2+ regulation of muscle contraction. , 1974, Biochemistry.

[175]  R. Jennings,et al.  The cell biology of acute myocardial ischemia. , 1991, Annual review of medicine.

[176]  Sampath K Gollapudi,et al.  The tropomyosin binding region of cardiac troponin T modulates crossbridge recruitment dynamics in rat cardiac muscle fibers. , 2013, Journal of molecular biology.

[177]  R. Hodges,et al.  Synthetic studies on the inhibitory region of rabbit skeletal troponin I. Relationship of amino acid sequence to biological activity. , 1981, The Journal of biological chemistry.

[178]  Ajay M Shah,et al.  Regulation of cardiac contractile function by troponin I phosphorylation. , 2005, Cardiovascular research.

[179]  Sampath K Gollapudi,et al.  The N-terminal extension of cardiac troponin T stabilizes the blocked state of cardiac thin filament. , 2012, Biophysical journal.

[180]  B. Sykes,et al.  Binding of cardiac troponin-I147-163 induces a structural opening in human cardiac troponin-C. , 1999, Biochemistry.

[181]  P. Barton,et al.  Identification of novel, cardiac-restricted transcription factors binding to a CACC-box within the human cardiac troponin I promoter. , 2001, Cardiovascular research.

[182]  E. Kranias,et al.  Phospholamban as a therapeutic modality in heart failure. , 2006, Novartis Foundation symposium.

[183]  P. Barton,et al.  The slow skeletal muscle troponin T gene is expressed in developing and diseased human heart , 2004, Molecular and Cellular Biochemistry.

[184]  J. Seidman,et al.  Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. , 1995, The New England journal of medicine.

[185]  A. Verin,et al.  Comparison of the structure of two cardiac troponin T isoforms. , 1985, The Biochemical journal.

[186]  Y. Shirakihara,et al.  Structural basis for tropomyosin overlap in thin (actin) filaments and the generation of a molecular swivel by troponin-T , 2008, Proceedings of the National Academy of Sciences.

[187]  R. Fletterick,et al.  Dynamics of the C-terminal region of TnI in the troponin complex in solution. , 2006, Biophysical journal.

[188]  Z. Papp,et al.  Increased Ca2+-sensitivity of the contractile apparatus in end-stage human heart failure results from altered phosphorylation of contractile proteins. , 2003, Cardiovascular research.

[189]  M. Yacoub,et al.  Identification of cis-acting DNA elements required for expression of the human cardiac troponin I gene promoter. , 2000, Journal of molecular and cellular cardiology.

[190]  M. Mayr,et al.  Protein Kinase D Selectively Targets Cardiac Troponin I and Regulates Myofilament Ca2+ Sensitivity in Ventricular Myocytes , 2007, Circulation research.

[191]  J. Cypser,et al.  Assignment of the human slow twitch skeletal muscle/cardiac troponin C gene (TNNC1) to human chromosome 3p21.3-->3p14.3 using somatic cell hybrids. , 1996, Cytogenetics and cell genetics.

[192]  D. Levitsky,et al.  Tropomyosin: Double helix from the protein world , 2011, Biochemistry (Moscow).

[193]  Brian D Sykes,et al.  Structure of the Regulatory N-domain of Human Cardiac Troponin C in Complex with Human Cardiac Troponin I147–163 and Bepridil* , 2002, The Journal of Biological Chemistry.

[194]  P. Hofmann,et al.  Effect of length and cross-bridge attachment on Ca2+ binding to cardiac troponin C. , 1987, The American journal of physiology.

[195]  Zhiling Zhang,et al.  Selective deletion of the NH2-terminal variable region of cardiac troponin T in ischemia reperfusion by myofibril-associated mu-calpain cleavage. , 2006, Biochemistry.

[196]  B. Sykes,et al.  Structure of the C-domain of Human Cardiac Troponin C in Complex with the Ca2+ Sensitizing Drug EMD 57033* , 2001, The Journal of Biological Chemistry.

[197]  J. Putkey,et al.  Drug Binding to Cardiac Troponin C* , 1999, The Journal of Biological Chemistry.

[198]  E. Kranias,et al.  Role of PP1 in the regulation of Ca cycling in cardiac physiology and pathophysiology. , 2009, Frontiers in bioscience.

[199]  P. Rosevear,et al.  In Vivo and in Vitro Analysis of Cardiac Troponin I Phosphorylation* , 2005, Journal of Biological Chemistry.

[200]  R. Solaro,et al.  Calcium, thin filaments, and the integrative biology of cardiac contractility. , 2005, Annual review of physiology.

[201]  K. Sikaris,et al.  Towards appreciating appropriate clinical responses to highly sensitive cardiac troponin assays , 2012, Internal medicine journal.

[202]  H. Katus,et al.  Cardiac troponin T: from diagnosis of myocardial infarction to cardiovascular risk prediction. , 2013, Circulation journal : official journal of the Japanese Circulation Society.

[203]  T. Nosek,et al.  Troponin T core structure and the regulatory NH2-terminal variable region. , 2007, Biochemistry.

[204]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[205]  Wolfgang A. Linke,et al.  Protein kinase-A phosphorylates titin in human heart muscle and reduces myofibrillar passive tension , 2006, Journal of Muscle Research & Cell Motility.

[206]  B D Sykes,et al.  Calcium-induced structural transition in the regulatory domain of human cardiac troponin C. , 1997, Biochemistry.

[207]  C. D. dos Remedios,et al.  Protein kinase C α and ε phosphorylation of troponin and myosin binding protein C reduce Ca2+ sensitivity in human myocardium , 2009, Basic Research in Cardiology.

[208]  H. Watkins,et al.  AMP-Activated Protein Kinase Phosphorylates Cardiac Troponin I and Alters Contractility of Murine Ventricular Myocytes , 2012, Circulation research.

[209]  J. Gilbert,et al.  A new human slow skeletal troponin T (TnTs) mRNA isoform derived from alternative splicing of a single gene. , 1994, Biochemical and biophysical research communications.

[210]  M. Geeves,et al.  Inhibition of actin-myosin subfragment 1 ATPase activity by troponin I and IC: relationship to the thin filament states of muscle. , 2000, Biochemistry.

[211]  L. Kedes,et al.  Cloning, structural analysis, and expression of the human fast twitch skeletal muscle troponin C gene. , 1990, The Journal of biological chemistry.

[212]  D. Hartshorne,et al.  Phosphorylation of smooth muscle myosin at two distinct sites by myosin light chain kinase. , 1985, The Journal of biological chemistry.

[213]  T. Cooper,et al.  A single cardiac troponin T gene generates embryonic and adult isoforms via developmentally regulated alternate splicing. , 1985, The Journal of biological chemistry.

[214]  J. V. Van Eyk,et al.  p21-Activated Kinase Increases the Calcium Sensitivity of Rat Triton-Skinned Cardiac Muscle Fiber Bundles via a Mechanism Potentially Involving Novel Phosphorylation of Troponin I , 2002, Circulation research.

[215]  J. M. Di Diego,et al.  Ischemic ventricular arrhythmias: experimental models and their clinical relevance. , 2011, Heart rhythm.

[216]  J. Kuo,et al.  Protein kinase C phosphorylation of cardiac troponin I and troponin T inhibits Ca(2+)-stimulated MgATPase activity in reconstituted actomyosin and isolated myofibrils, and decreases actin-myosin interactions. , 1993, Journal of molecular and cellular cardiology.

[217]  G. Marriott,et al.  Structural Dynamics of Troponin I during Ca2+-Activation of Cardiac Thin Filaments: A Multi-Site Förster Resonance Energy Transfer Study , 2012, PloS one.

[218]  P. D. de Tombe,et al.  Protein kinase A does not alter economy of force maintenance in skinned rat cardiac trabeculae. , 1995, Circulation research.

[219]  H E Huxley,et al.  Regulation of skeletal muscle contraction. II. Structural studies of the interaction of the tropomyosin-troponin complex with actin. , 1972, Journal of molecular biology.

[220]  M. Morgan,et al.  Slow troponin T mRNA in striated muscles is expressed in both cell type and developmental stage specific manner , 2004, Journal of Muscle Research & Cell Motility.

[221]  N. Gusev,et al.  Isolation and some properties of troponin T kinase from rabbit skeletal muscle. , 1980, The Biochemical journal.

[222]  D. Allen,et al.  The cellular basis of the length-tension relation in cardiac muscle. , 1985, Journal of molecular and cellular cardiology.

[223]  M. Bollen,et al.  Functional diversity of protein phosphatase-1, a cellular economizer and reset button. , 2004, Physiological reviews.

[224]  B. Garcia,et al.  Proteomics , 2011, Journal of biomedicine & biotechnology.

[225]  R. Kretsinger,et al.  Structure and evolution of calcium-modulated proteins. , 1980, CRC critical reviews in biochemistry.

[226]  M. Gautel,et al.  Phosphorylation switches specific for the cardiac isoform of myosin binding protein‐C: a modulator of cardiac contraction? , 1995, The EMBO journal.

[227]  P. Allen,et al.  Troponin T isoform expression in humans. A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle. , 1991, Circulation research.

[228]  Jennifer E Van Eyk,et al.  Multiple Reaction Monitoring to Identify Site-Specific Troponin I Phosphorylated Residues in the Failing Human Heart , 2012, Circulation.

[229]  L. Smillie,et al.  Single Mutation (A162H) in Human Cardiac Troponin I Corrects Acid pH Sensitivity of Ca2+-regulated Actomyosin S1 ATPase* , 2002, The Journal of Biological Chemistry.

[230]  Yuichiro Maéda,et al.  Structure of the core domain of human cardiac troponin in the Ca2+-saturated form , 2003, Nature.

[231]  W. Dong,et al.  Ca(2+) induces an extended conformation of the inhibitory region of troponin I in cardiac muscle troponin. , 2001, Journal of molecular biology.

[232]  Yuichiro Maéda,et al.  The nature of the globular- to fibrous-actin transition , 2009, Nature.

[233]  C. Granier,et al.  Systematic mapping of regions of human cardiac troponin I involved in binding to cardiac troponin C: N‐ and C‐terminal low affinity contributing regions , 2000, FEBS letters.

[234]  D. Ward,et al.  NMR and mutagenesis studies on the phosphorylation region of human cardiac troponin I. , 2004, Biochemistry.

[235]  P. Hofmann,et al.  Acute modulation of PP2a and troponin I phosphorylation in ventricular myocytes: studies with a novel PP2a peptide inhibitor. , 2007, American journal of physiology. Heart and circulatory physiology.

[236]  Y. Li,et al.  Bepridil opens the regulatory N-terminal lobe of cardiac troponin C. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[237]  C. Glover,et al.  Gene expression profiling for hematopoietic cell culture , 2006 .

[238]  K. Mittmann,et al.  Ordered phosphorylation of a duplicated minimal recognition motif for cAMP‐dependent protein kinase present in cardiac troponin I , 1992, FEBS letters.

[239]  H. Watkins,et al.  Sudden death due to troponin T mutations. , 1997, Journal of the American College of Cardiology.

[240]  R. Hershberger,et al.  Coding Sequence Mutations Identified in MYH7, TNNT2, SCN5A, CSRP3, LBD3, and TCAP from 313 Patients with Familial or Idiopathic Dilated Cardiomyopathy , 2008, Clinical and translational science.

[241]  G. Yan,et al.  Phosphorylation of cardiac troponin I by mammalian sterile 20-like kinase 1. , 2009, The Biochemical journal.

[242]  J. Zhang,et al.  Expression of cDNAs encoding mouse cardiac troponin T isoforms: characterization of a large sample of independent clones. , 1996, Gene.

[243]  R. Stefancsik,et al.  Identification and mutagenesis of a highly conserved domain in troponin T responsible for troponin I binding: potential role for coiled coil interaction. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[244]  P. Rosevear,et al.  Phosphorylation-dependent conformational transition of the cardiac specific N-extension of troponin I in cardiac troponin. , 2007, Journal of molecular biology.

[245]  B. Sykes,et al.  Interaction of cardiac troponin C with Ca(2+) sensitizer EMD 57033 and cardiac troponin I inhibitory peptide. , 2000, Biochemistry.

[246]  R. Solaro,et al.  Molecular and Integrated Biology of Thin Filament Protein Phosphorylation in Heart Muscle , 2004, Annals of the New York Academy of Sciences.

[247]  M. Geeves,et al.  Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. , 1993, Biophysical journal.

[248]  A. E. Oakeley,et al.  Immunological Identification of Five Troponin T Isoforms Reveals an Elaborate Maturational Troponin T Profile in Rabbit Myocardium , 1989, Circulation research.

[249]  Thomas Kohl,et al.  Developmental changes in passive stiffness and myofilament Ca2+ sensitivity due to titin and troponin-I isoform switching are not critically triggered by birth. , 2006, American journal of physiology. Heart and circulatory physiology.

[250]  Kenneth C Holmes,et al.  The molecular mechanism of muscle contraction. , 2005, Advances in protein chemistry.

[251]  L. Heilmeyer,et al.  Phosphorylation of rabbit muscle troponin and actin by a 3′, 5′‐c‐AMP‐dependent protein kinase , 1972, FEBS letters.

[252]  J. Leiden,et al.  Attenuation of length dependence of calcium activation in myofilaments of transgenic mouse hearts expressing slow skeletal troponin I , 2000, The Journal of physiology.

[253]  A. Mccarthy Development , 1996, Current Opinion in Neurobiology.

[254]  J. Hervé,et al.  Protein phosphatase modulation of the intercellular junctional communication: importance in cardiac myocytes. , 2006, Progress in biophysics and molecular biology.

[255]  A. Chen,et al.  Three alternatively spliced mouse slow skeletal muscle troponin T isoforms: conserved primary structure and regulated expression during postnatal development. , 1998, Gene.

[256]  H. Huxley,et al.  Calcium sensitive binding of troponin to actin-tropomyosin: a two-site model for troponin action. , 1973, Journal of molecular biology.

[257]  A. Jaffe,et al.  Analytic and clinical utility of a next-generation, highly sensitive cardiac troponin I assay for early detection of myocardial injury. , 2009, Clinical chemistry.

[258]  H. Granzier,et al.  Protein Kinase A Phosphorylates Titin’s Cardiac-Specific N2B Domain and Reduces Passive Tension in Rat Cardiac Myocytes , 2002, Circulation research.

[259]  K. Takahashi,et al.  The amino acid sequence of bovine cardiac tamponin-C. Comparison with rabbit skeletal troponin-C. , 1975, Biochemical and biophysical research communications.

[260]  K. Mittmann,et al.  A common motif of two adjacent phosphoserines in bovine, rabbit and human cardiac troponin I , 1990 .

[261]  George N. Phillips,et al.  Structure of co-crystals of tropomyosin and troponin , 1987, Nature.

[262]  P. D. de Tombe,et al.  Identification of a Functionally Critical Protein Kinase C Phosphorylation Residue of Cardiac Troponin T * , 2003, Journal of Biological Chemistry.

[263]  L. Smillie,et al.  Structural interpretation of the two-site binding of troponin on the muscle thin filament. , 1981, Journal of molecular biology.

[264]  P. Fajer,et al.  Structure of the inhibitory region of troponin by site directed spin labeling electron paramagnetic resonance , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[265]  M. Saraste,et al.  FEBS Lett , 2000 .

[266]  R. Moss,et al.  Differential Roles of Cardiac Myosin-Binding Protein C and Cardiac Troponin I in the Myofibrillar Force Responses to Protein Kinase A Phosphorylation , 2007, Circulation research.

[267]  L. Tobacman,et al.  Thin filament-mediated regulation of cardiac contraction. , 1996, Annual review of physiology.

[268]  R. Xiao,et al.  Dual site phospholamban phosphorylation and its physiological relevance in the heart. , 2002, Trends in cardiovascular medicine.

[269]  W. Dong,et al.  Förster Resonance Energy Transfer Structural Kinetic Studies of Cardiac Thin Filament Deactivation* , 2009, The Journal of Biological Chemistry.

[270]  M. Gautel,et al.  Protein Kinase D Is a Novel Mediator of Cardiac Troponin I Phosphorylation and Regulates Myofilament Function , 2004, Circulation research.

[271]  L. Smillie,et al.  The interaction of rabbit skeletal muscle troponin-T fragments with troponin-I. , 1985, Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire.

[272]  E. Homsher,et al.  Impact of cardiac troponin T N-terminal deletion and phosphorylation on myofilament function. , 2009, Biochemistry.

[273]  D M Bers,et al.  Calcium fluxes involved in control of cardiac myocyte contraction. , 2000, Circulation research.

[274]  B. E. Robertson,et al.  Aminopyridine inhibition and voltage dependence of K+ currents in smooth muscle cells from cerebral arteries. , 1994, The American journal of physiology.

[275]  R. Lee,et al.  Isolation and functional comparison of bovine cardiac troponin T isoforms. , 1987, The Journal of biological chemistry.

[276]  R. Waugh,et al.  ASK1 associates with troponin T and induces troponin T phosphorylation and contractile dysfunction in cardiomyocytes. , 2003, The American journal of pathology.

[277]  Miriam Parker,et al.  Idiopathic dilated cardiomyopathy: a common but mystifying cause of heart failure. , 2002, Cleveland Clinic journal of medicine.

[278]  M. Kazanietz,et al.  Differential regulation of cardiac actomyosin S-1 MgATPase by protein kinase C isozyme-specific phosphorylation of specific sites in cardiac troponin I and its phosphorylation site mutants. , 1996, Biochemistry.

[279]  Ying Ge,et al.  Top-down quantitative proteomics identified phosphorylation of cardiac troponin I as a candidate biomarker for chronic heart failure. , 2011, Journal of proteome research.

[280]  Dahua Zhang,et al.  Phosphorylation of Troponin I Controls Cardiac Twitch Dynamics: Evidence From Phosphorylation Site Mutants Expressed on a Troponin I-Null Background in Mice , 2002, Circulation research.

[281]  R. Quatrano Genomics , 1998, Plant Cell.

[282]  G. Phillips,et al.  Tropomyosin crystal structure and muscle regulation. , 1986, Journal of molecular biology.

[283]  M. Yacoub,et al.  Developmental expression of troponin I isoforms in fetal human heart , 1991, FEBS letters.

[284]  S. Takeda Crystal structure of troponin and the molecular mechanism of muscle regulation. , 2005, Journal of Electron Microscopy.

[285]  C. D. dos Remedios,et al.  Impact of site-specific phosphorylation of protein kinase A sites Ser23 and Ser24 of cardiac troponin I in human cardiomyocytes. , 2013, American journal of physiology. Heart and circulatory physiology.

[286]  Gwyndaf Evans,et al.  A comparison of muscle thin filament models obtained from electron microscopy reconstructions and low-angle X-ray fibre diagrams from non-overlap muscle. , 2006, Journal of structural biology.

[287]  C. Ruse,et al.  Quantitative dynamics of site-specific protein phosphorylation determined using liquid chromatography electrospray ionization mass spectrometry. , 2002, Analytical chemistry.

[288]  Tomoyoshi Kobayashi,et al.  Ala Scanning of the Inhibitory Region of Cardiac Troponin I* , 2009, The Journal of Biological Chemistry.

[289]  J. Jin Alternative RNA splicing-generated cardiac troponin T isoform switching: a non-heart-restricted genetic programming synchronized in developing cardiac and skeletal muscles. , 1996, Biochemical and biophysical research communications.

[290]  S. Schiaffino,et al.  Developmental expression of rat cardiac troponin I mRNA. , 1991, Development.

[291]  J. Kuo,et al.  Cardiac Troponin I Mutants , 1995, The Journal of Biological Chemistry.

[292]  Tobias Reichlin,et al.  Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. , 2009, The New England journal of medicine.

[293]  J. Putkey,et al.  Site-directed mutation of the trigger calcium-binding sites in cardiac troponin C. , 1989, The Journal of biological chemistry.

[294]  E. Krebs,et al.  Phosphorylation of the inhibitor component of troponin by phosphorylase kinase. , 1972, The Journal of biological chemistry.

[295]  C. Ramos,et al.  Structural and regulatory functions of the NH2- and COOH-terminal regions of skeletal muscle troponin I. , 1994, The Journal of biological chemistry.

[296]  B D Sykes,et al.  NMR solution structure of calcium-saturated skeletal muscle troponin C. , 1995, Biochemistry.

[297]  V. Zabrouskov,et al.  Unraveling Molecular Complexity of Phosphorylated Human Cardiac Troponin I by Top Down Electron Capture Dissociation/Electron Transfer Dissociation Mass Spectrometry*S , 2008, Molecular & Cellular Proteomics.

[298]  N. Gusev,et al.  Some properties of cardiac troponin T structure. , 1983, The Biochemical journal.

[299]  J B Seward,et al.  Clinical profile and outcome of idiopathic restrictive cardiomyopathy. , 2000, Circulation.

[300]  J. Kuo,et al.  Identification of sites phosphorylated in bovine cardiac troponin I and troponin T by protein kinase C and comparative substrate activity of synthetic peptides containing the phosphorylation sites. , 1989, The Journal of biological chemistry.

[301]  M. B. Kelly,et al.  Force-pCa relation and troponin T isoforms of rabbit myocardium. , 1991, Circulation research.

[302]  L. Kedes,et al.  cDNA sequence, tissue-specific expression, and chromosomal mapping of the human slow-twitch skeletal muscle isoform of troponin I. , 1990, Genomics.