UNCOVER: The Growth of the First Massive Black Holes from JWST/NIRSpec—Spectroscopic Redshift Confirmation of an X-Ray Luminous AGN at z = 10.1

The James Webb Space Telescope is now detecting early black holes (BHs) as they transition from “seeds” to supermassive BHs. Recently, Bogdan et al. reported the detection of an X-ray luminous supermassive BH, UHZ-1, with a photometric redshift at z > 10. Such an extreme source at this very high redshift provides new insights on seeding and growth models for BHs given the short time available for formation and growth. Harnessing the exquisite sensitivity of JWST/NIRSpec, here we report the spectroscopic confirmation of UHZ-1 at z = 10.073 ± 0.002. We find that the NIRSpec/Prism spectrum is typical of recently discovered z ≈ 10 galaxies, characterized primarily by star formation features. We see no clear evidence of the powerful X-ray source in the rest-frame UV/optical spectrum, which may suggest heavy obscuration of the central BH, in line with the Compton-thick column density measured in the X-rays. We perform a stellar population fit simultaneously to the new NIRSpec spectroscopy and previously available photometry. The fit yields a stellar-mass estimate for the host galaxy that is significantly better constrained than prior photometric estimates ( M⋆∼1.4−0.4+0.3×108 M ⊙). Given the predicted BH mass (M BH ∼ 107–108 M ⊙), the resulting ratio of M BH/M ⋆ remains 2 to 3 orders of magnitude higher than local values, thus lending support to the heavy seeding channel for the formation of supermassive BHs within the first billion years of cosmic evolution.

[1]  L. Y. Aaron Yung,et al.  Hidden Little Monsters: Spectroscopic Identification of Low-mass, Broad-line AGNs at z > 5 with CEERS , 2023, The Astrophysical Journal Letters.

[2]  Philip J. Tait,et al.  Quasar Luminosity Function at z = 7 , 2023, The Astrophysical Journal Letters.

[3]  A. Zitrin,et al.  JWST UNCOVER: discovery of z > 9 galaxy candidates behind the lensing cluster Abell 2744 , 2023, Monthly Notices of the Royal Astronomical Society.

[4]  L. Y. Aaron Yung,et al.  Spectroscopic Confirmation of CEERS NIRCam-selected Galaxies at z ≃ 8–10 , 2023, The Astrophysical Journal Letters.

[5]  L. Y. Aaron Yung,et al.  A CEERS Discovery of an Accreting Supermassive Black Hole 570 Myr after the Big Bang: Identifying a Progenitor of Massive z > 6 Quasars , 2023, The Astrophysical Journal Letters.

[6]  Benjamin D. Johnson,et al.  Inferring More from Less: Prospector as a Photometric Redshift Engine in the Era of JWST , 2023, The Astrophysical Journal Letters.

[7]  Astrophysics,et al.  JWST UNCOVER: Extremely Red and Compact Object at z phot ≃ 7.6 Triply Imaged by A2744 , 2022, The Astrophysical Journal.

[8]  Xiaohui Fan,et al.  Quasars and the Intergalactic Medium at Cosmic Dawn , 2022, Annual Review of Astronomy and Astrophysics.

[9]  M. Meneghetti,et al.  Early Results from GLASS-JWST. XIX. A High Density of Bright Galaxies at z ≈ 10 in the A2744 Region , 2022, The Astrophysical Journal Letters.

[10]  Astrophysics,et al.  UNCOVERing the extended strong lensing structures of Abell 2744 with the deepest JWST imaging , 2022, Monthly Notices of the Royal Astronomical Society.

[11]  H. Rix,et al.  Spectroscopic confirmation of four metal-poor galaxies at z = 10.3–13.2 , 2022, Nature Astronomy.

[12]  A. Fontana,et al.  Early Results from GLASS-JWST. III. Galaxy Candidates at z ∼9–15 , 2022, The Astrophysical Journal Letters.

[13]  L. Ho,et al.  The Age of Discovery with the James Webb Space Telescope: Excavating the Spectral Signatures of the First Massive Black Holes , 2022, 2204.09692.

[14]  K. Jahnke,et al.  Co-evolution of massive black holes and their host galaxies at high redshift: discrepancies from six cosmological simulations and the key role of JWST , 2022, 2201.09892.

[15]  S. Arnouts,et al.  GOLDRUSH. IV. Luminosity Functions and Clustering Revealed with ∼4,000,000 Galaxies at z ∼ 2–7: Galaxy–AGN Transition, Star Formation Efficiency, and Implication for Evolution at z > 10 , 2021, The Astrophysical Journal Supplement Series.

[16]  H. Rix,et al.  The Kinematics of z ≳ 6 Quasar Host Galaxies , 2021, The Astrophysical Journal.

[17]  Benjamin D. Johnson,et al.  Stellar Population Inference with Prospector , 2020, The Astrophysical Journal Supplement Series.

[18]  P. Natarajan A new channel to form IMBHs throughout cosmic time , 2020, 2009.09156.

[19]  Ny,et al.  Black hole -- galaxy scaling relations in FIRE: the importance of black hole location and mergers , 2020, 2007.12185.

[20]  L. Ho,et al.  Intermediate-Mass Black Holes , 2019, 1911.09678.

[21]  J. Silverman,et al.  Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). VIII. A less biased view of the early co-evolution of black holes and host galaxies , 2019, Publications of the Astronomical Society of Japan.

[22]  Philip J. Tait,et al.  Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). V. Quasar Luminosity Function and Contribution to Cosmic Reionization at z = 6 , 2018, The Astrophysical Journal.

[23]  Xiaohui Fan,et al.  The Discovery of a Gravitationally Lensed Quasar at z = 6.51 , 2018, The Astrophysical Journal.

[24]  M. Volonteri,et al.  The hierarchical assembly of galaxies and black holes in the first billion years: predictions for the era of gravitational wave astronomy , 2018, Monthly Notices of the Royal Astronomical Society.

[25]  R. Davé,et al.  Inferring the star formation histories of massive quiescent galaxies with bagpipes: evidence for multiple quenching mechanisms , 2017, Monthly Notices of the Royal Astronomical Society.

[26]  H. Rix,et al.  An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5 , 2017, Nature.

[27]  Carnegie,et al.  Black holes on FIRE: stellar feedback limits early feeding of galactic nuclei , 2017, 1707.03832.

[28]  W. Brandt,et al.  A New Compton-thick AGN in Our Cosmic Backyard: Unveiling the Buried Nucleus in NGC 1448 with NuSTAR , 2017, 1701.00497.

[29]  E. Zackrisson,et al.  Unveiling the First Black Holes With JWST:Multi-wavelength Spectral Predictions , 2016, 1610.05312.

[30]  Yu Feng,et al.  The origin of the most massive black holes at high-z: BlueTides and the next quasar frontier , 2016, 1606.08871.

[31]  T. Alexander,et al.  Rapid growth of seed black holes in the early universe by supra-exponential accretion , 2014, Science.

[32]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[33]  M. P. Hobson,et al.  Importance Nested Sampling and the MultiNest Algorithm , 2013, The Open Journal of Astrophysics.

[34]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies , 2013, 1308.6483.

[35]  J. Dunlop,et al.  Unravelling obese black holes in the first galaxies , 2013, 1302.6996.

[36]  T. Yaqoob The nature of the Compton-thick X-ray reprocessor in NGC 4945 , 2012, 1204.4196.

[37]  D. Alexander,et al.  What drives the growth of black holes , 2011, 1112.1949.

[38]  A. J. Cenarro,et al.  An updated MILES stellar library and stellar population models , 2011, 1107.2303.

[39]  M. Irwin,et al.  A luminous quasar at a redshift of z = 7.085 , 2011, Nature.

[40]  M. Begelman Evolution of supermassive stars as a pathway to black hole formation , 2009, 0910.4398.

[41]  A. Goulding,et al.  Towards a complete census of AGN in nearby Galaxies: a large population of optically unidentified AGN , 2009, 0906.0772.

[42]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[43]  P. Natarajan,et al.  The evolution of massive black hole seeds , 2007, 0709.0529.

[44]  Astronomy,et al.  The mass function of high-redshift seed black holes , 2007, astro-ph/0702340.

[45]  R. Peletier,et al.  MILES: A Medium resolution INT Library of Empirical Spectra , 2006, astro-ph/0607009.

[46]  Cambridge,et al.  Supermassive black hole formation during the assembly of pre-galactic discs , 2006, astro-ph/0606159.

[47]  Heidelberg,et al.  Runaway collisions in young star clusters - II. Numerical results , 2005, astro-ph/0503130.

[48]  A. University,et al.  Massive black hole seeds from low angular momentum material , 2003, astro-ph/0311487.

[49]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[50]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[51]  Simon F. Portegies Zwart,et al.  The Runaway Growth of Intermediate-Mass Black Holes in Dense Star Clusters , 2002, astro-ph/0201055.

[52]  M. Miller,et al.  Production of intermediate-mass black holes in globular clusters , 2001, astro-ph/0106188.

[53]  Z. Haiman,et al.  What Is the Highest Plausible Redshift of Luminous Quasars? , 2000, astro-ph/0011529.

[54]  A. Fabian,et al.  The X-ray spectra of Compton-thick Seyfert 2 galaxies as seen by BeppoSAX , 2000, astro-ph/0005219.

[55]  S. M. Fall,et al.  A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.

[56]  A. Loeb,et al.  Collapse of primordial gas clouds and the formation of quasar black holes , 1994, astro-ph/9401026.

[57]  Benjamin D. Johnson,et al.  How to Measure Galaxy Star Formation Histories. I. Parametric Models , 2019 .

[58]  J. Muzerolle,et al.  The JWST Calibration Pipeline , 2015 .

[59]  K. Horne Publications of the Astronomical Society of the Pacific 98:609-617, June 1986 AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY , 2015 .

[60]  M. Camenzind,et al.  Formation of the First Supermassive Black Holes in the Early Universe , 2009 .