A novel experimental system for the study of microbial ecology and mineral leaching within a simulated agglomerate-scale heap bioleaching system

[1]  M. Johns,et al.  MRI and gravimetric studies of hydrology in drip irrigated heaps and its effect on the propagation of bioleaching micro-organisms , 2014 .

[2]  S. Harrison,et al.  Effect of inoculum size on the rates of whole ore colonisation of mesophilic, moderate thermophilic and thermophilic acidophiles , 2014 .

[3]  S. Harrison,et al.  Determining the effect of acid stress on the persistence and growth of thermophilic microbial species after mesophilic colonisation of low grade ore in a heap leach environment , 2013 .

[4]  S. Harrison,et al.  Quantification of growth and colonisation of low grade sulphidic ores by acidophilic chemoautotrophs using a novel experimental system , 2013 .

[5]  W. Sand,et al.  Investigation and in situ visualisation of interfacial interactions of thermophilic microorganisms with metal-sulphides in a simulated heap environment , 2013 .

[6]  S. Harrison,et al.  Attachment of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum cultured under varying conditions to pyrite, chalcopyrite, low-grade ore and quartz in a packed column reactor , 2013, Applied Microbiology and Biotechnology.

[7]  S. Harrison,et al.  Microbial colonisation in heaps for mineral bioleaching and the influence of irrigation rate , 2012 .

[8]  Bijay K. Mishra,et al.  Insights into heap bioleaching of low grade chalcopyrite ores — A pilot scale study , 2012 .

[9]  S. Harrison,et al.  Modification of the ferric chloride assay for the spectrophotometric determination of ferric and total iron in acidic solutions containing high concentrations of copper , 2012 .

[10]  S. Harrison,et al.  The effect of temperature and culture history on the attachment of Metallosphaera hakonensis to mineral sulfides with application to heap bioleaching , 2011 .

[11]  E. Watkin,et al.  Microbial population dynamics of inoculated low-grade chalcopyrite bioleaching columns , 2010 .

[12]  Cecilia Demergasso,et al.  Microbial succession during a heap bioleaching cycle of low grade copper sulfides Does this knowledge mean a real input for industrial process design and control , 2010 .

[13]  S. Harrison,et al.  Investigating heap bioleaching: Effect of feed iron concentration on bioleaching performance , 2010 .

[14]  S. Harrison,et al.  In situ investigation and visualisation of microbial attachment and colonisation in a heap bioleach environment: The novel biofilm reactor , 2010 .

[15]  S. Bouffard,et al.  Hydrodynamic behavior of heap leach piles: Influence of testing scale and material properties , 2009 .

[16]  J. Puhakka,et al.  Heap bioleaching of a complex sulfide ore: Part I: Effect of pH on metal extraction and microbial composition in pH controlled columns , 2009 .

[17]  J. Puhakka,et al.  Heap bioleaching of a complex sulfide ore: Part II. Effect of temperature on base metal extraction and bacterial compositions , 2009 .

[18]  C. L. Brierley,et al.  How will biomining be applied in future , 2008 .

[19]  C. Joulian,et al.  Sulfobacillus benefaciens sp. nov., an acidophilic facultative anaerobic Firmicute isolated from mineral bioleaching operations , 2008, Extremophiles.

[20]  B. Mishra,et al.  Heap bioleaching of chalcopyrite : A review , 2008 .

[21]  M. Tsunekawa,et al.  Effect of solution composition on the optimum redox potential for chalcopyrite leaching in sulfuric acid solutions , 2008 .

[22]  Helen R. Watling,et al.  The bioleaching of sulphide minerals with emphasis on copper sulphides — A review , 2006 .

[23]  W. Sand,et al.  Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans , 2006 .

[24]  E. Casamayor,et al.  Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap , 2005 .

[25]  D. Barrie Johnson,et al.  Remediation of acidic waste waters using immobilised, acidophilic sulfate‐reducing bacteria , 2001 .

[26]  D. G. Dixon,et al.  Analysis of heat conservation during copper sulphide heap leaching , 2000 .

[27]  A. Ball,et al.  Investigation of the attachment of Thiobacillus ferrooxidans to mineral sulfides using scanning electron microscopy analysis , 2000 .

[28]  W. Sand,et al.  Importance of Extracellular Polymeric Substances from Thiobacillus ferrooxidans for Bioleaching , 1998, Applied and Environmental Microbiology.

[29]  D. Johnson Selective solid media for isolating and enumerating acidophilic bacteria , 1995 .

[30]  A. Ballester,et al.  A study of the bioleaching of a Spanish uranium ore. Part III: Column experiments , 1995 .

[31]  J. A. Finch,et al.  Galvanic Interaction Studies on Sulphide Minerals , 1988 .

[32]  O. Levenspiel Chemical Reaction Engineering , 1972 .

[33]  J. O. Irwin,et al.  The estimation of the bactericidal power of the blood , 1938, Epidemiology and Infection.

[34]  M. Gericke Review of the role of microbiology in the design and operation of heap bioleaching processes , 2012 .

[35]  Nicholas Robert Louis Spurr Interrelationship of hydrology, microbial colonisation and hydrometallurgy in a simulated chalcopyrite heap leach , 2008 .

[36]  C. D. Plessis,et al.  Commercial Applications of Thermophile Bioleaching , 2007 .

[37]  M. Malmström,et al.  A comparison of methods for mine tailings sterilisation , 2003 .

[38]  F. Frutos Bacterial Leaching of Minerals , 1998 .

[39]  L. Murr,et al.  THE USE OF LARGE-SCALE TEST FACILITIES IN STUDIES OF THE ROLE OF MICROORGANISMS IN COMMERCIAL LEACHING OPERATIONS , 1978 .

[40]  Lawrence E Murr,et al.  Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena, with A. E. Torma and J. A. Brierly , Academic Press, New York, , 1978 .