Elementary Linear Algebra

We write the array in short as [aij ] with i and j denoting the indices for the rows and columns respectively. We say that a matrix with m rows and n columns is of size m × n. An m × n matrix has mn elements. If m = n the matrix is called a square matrix. A matrix with just one column is called a vector while one with just one row is called a covector or row vector. A 1 × 1 matrix is called a scalar and is simply a number. Examples: a 2 × 3 matrix, ( 1 2 3 4 5 6 )

[1]  F. Graybill,et al.  Matrices with Applications in Statistics. , 1984 .

[2]  Samuel Karlin,et al.  A First Course on Stochastic Processes , 1968 .

[3]  David R. Hill,et al.  Experiments in computational matrix algebra , 1987 .

[4]  I.F. Blake,et al.  Introduction to the theory of error-correcting codes , 1984, Proceedings of the IEEE.

[5]  James A. Murtha,et al.  Linear algebra and geometry , 1969 .

[6]  Gerald C. Preston,et al.  Modern analytic geometry , 1971 .

[7]  Martin Pearl Matrix Theory And Finite Mathematics , 1973 .

[8]  L. G. Loitsianskii,et al.  On motion of fluid in boundary layer near line of intersection of two planes , 1951 .

[9]  N.R. Malik,et al.  Graph theory with applications to engineering and computer science , 1975, Proceedings of the IEEE.

[10]  K. P. Williams The General Equation of the Second Degree , 1941 .

[11]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[12]  N. Pullman Matrix theory and its applications , 1976 .

[13]  L. A. Pipes Matrix methods for engineering , 1963 .

[14]  B. Noble Applied Linear Algebra , 1969 .

[15]  Narsingh Deo,et al.  Graph Theory with Applications to Engineering and Computer Science , 1975, Networks.

[16]  V. Pless Introduction to the Theory of Error-Correcting Codes , 1991 .

[17]  Jean Dieudonne,et al.  Linear algebra and geometry , 1969 .

[18]  M. Lewin On nonnegative matrices , 1971 .

[19]  Charles G. Cullen Linear algebra with applications , 1988 .

[20]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[21]  A. C. Chiang Fundamental methods of mathematical economics , 1974 .

[22]  T. J. Fletcher,et al.  Linear algebra; through its applications , 1972 .

[23]  Norman J. Pullman,et al.  An introduction to the application of nonnegative matrices to biological systems , 1984 .

[24]  John G. Kemeny,et al.  Finite Markov chains , 1960 .

[25]  Daniel Thalmann,et al.  State-of-the-art in Computer Animation , 1989, Springer Japan.

[26]  John E. Howland,et al.  Computer graphics , 1990, IEEE Potentials.

[27]  J. Schmee Matrices with Applications in Statistics , 1982 .

[28]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[29]  David Gans,et al.  Transformations and geometries , 1969 .

[30]  Vera Pless,et al.  Introduction to the Theory of Error-Correcting Codes , 1991 .

[31]  Hugh G. Campbell Matrices With Applications , 1968 .

[32]  C. H. Edwards Advanced calculus of several variables , 1973 .

[33]  Jürgen Gross,et al.  The vector cross product in , 1999 .

[34]  Adobe Press,et al.  Postscript language - tutorial and cookbook , 1986 .