Classical rules and quantum strategies in penny flip game
暂无分享,去创建一个
[1] Derek Abbott,et al. Advantage of a quantum player over a classical one in 2 × 2 quantum games , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[2] Simon C. Benjamin,et al. Multiplayer quantum games , 2001 .
[3] K. B. Whaley,et al. Geometric theory of nonlocal two-qubit operations , 2002, quant-ph/0209120.
[4] S. J. van Enk,et al. Classical rules in quantum games , 2002 .
[5] Qing-Liang Wang,et al. Quantum Game of Two Discriminable Coins , 2008 .
[6] Hong Guo,et al. A survey of quantum games , 2008, Decis. Support Syst..
[7] J. Neumann,et al. Theory of games and economic behavior , 1945, 100 Years of Math Milestones.
[8] J. Eisert,et al. Quantum Games and Quantum Strategies , 1998, quant-ph/9806088.
[9] Leong Chuan Kwek,et al. Quantum roulette: an extended quantum strategy , 2000 .
[10] M. A. Lohe,et al. An analysis of the quantum penny flip game using geometric algebra , 2009, 0902.4296.
[11] I. Chuang,et al. Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .
[12] D. Meyer. Quantum strategies , 1998, quant-ph/9804010.
[13] Luca Marinatto,et al. A quantum approach to static games of complete information , 2000 .
[14] J. Nash. Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.
[15] A. T. Rezakhani. Characterization of two-qubit perfect entanglers , 2004 .
[16] Hui Li,et al. Entanglement playing a dominating role in quantum games , 2001 .