Voronoi diagrams for convex polygon-offset distance functions

In this paper we develop the concept of a convexpolygon-offset distance function. Using offset as a notion of distance, we show how to compute the corresponding nearest- and furthest-site Voronoi diagrams of point sites in the plane. We provide near-optimal deterministicO(n(logn + log2m) +m)-time algorithms, wheren is the number of points andm is the complexity of the underlying polygon, for computing compact representations of both diagrams.

[1]  Kurt Mehlhorn,et al.  On the construction of abstract voronoi diagrams , 1990, STACS.

[2]  Kurt Mehlhorn,et al.  Randomized Incremental Construction of Abstract Voronoi Diagrams , 1993, Comput. Geom..

[3]  David G. Kirkpatrick,et al.  A compact piecewise-linear voronoi diagram for convex sites in the plane , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[4]  D. H. Hyers Linear topological spaces , 1945 .

[5]  Kurt Mehlhorn,et al.  Furthest Site Abstract Voronoi Diagrams , 2001, Int. J. Comput. Geom. Appl..

[6]  Michael T. Goodrich,et al.  Offset-polygon annulus placement problems , 1997, Comput. Geom..

[7]  Saad T. Bakir,et al.  Tolerance Design: A Handbook for Developing Optimal Specifications , 1996 .

[8]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[9]  David Rappaport Computing the Furthest Site Voronoi Diagram for a Set of Discs (Preliminary Report) , 1989, WADS.

[10]  Rolf Klein,et al.  Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.

[11]  Robert L. Scot Drysdale,et al.  Voronoi diagrams based on convex distance functions , 1985, SCG '85.

[12]  David G. Kirkpatrick,et al.  Tentative Prune-and-Search for Computing Fixed-Points with Applications to Geometric Computation , 1995, Fundam. Informaticae.

[13]  Derick Wood,et al.  Voronoi Diagrams Based on General Metrics in the Plane , 1988, STACS.

[14]  Franz Aurenhammer,et al.  A Novel Type of Skeleton for Polygons , 1995, J. Univers. Comput. Sci..

[15]  Franz Aurenhammer,et al.  Straight Skeletons for General Polygonal Figures in the Plane , 1996, COCOON.

[16]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .