PascalX - Supplementary information

with Fχ2 m+2k the CDF of a χ distribution with m + 2k degrees of freedom and β > 0 an arbitrary constant. For ak ≥ 0 and ∑ k ak = 1 the above sum constitutes a so-called (infinite) mixture representation. In particular, every β ≤ λmin yields such a mixture representation, with λmin denoting the smallest coefficient of the linear combination of χ distributed random variables. Ruben showed that in the mixture case, the truncation error, and so the precision ε, can be bounded by ∣∣∣∣1− K−1 ∑

[1]  S. Bergmann,et al.  Cross-GWAS coherence test at the gene and pathway level , 2022, PLoS Comput. Biol..

[2]  F. Hormozdiari,et al.  Combining SNP-to-gene linking strategies to identify disease genes and assess disease omnigenicity , 2022, Nature Genetics.

[3]  Ira M. Hall,et al.  High-coverage whole-genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios , 2021, Cell.

[4]  Nick C Fox,et al.  Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing , 2019, Nature Genetics.

[5]  Niall M. Adams,et al.  A comparison of efficient approximations for a weighted sum of chi-squared random variables , 2016, Stat. Comput..

[6]  Daniel Marbach,et al.  Fast and Rigorous Computation of Gene and Pathway Scores from SNP-Based Summary Statistics , 2016, PLoS Comput. Biol..

[7]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[8]  Judy H. Cho,et al.  Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations , 2015, Nature Genetics.

[9]  F. Nuttall,et al.  Body Mass Index , 2020, Definitions.

[10]  Hailiang Huang,et al.  High density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis , 2014, Nature Genetics.

[11]  C. Spencer,et al.  Biological Insights From 108 Schizophrenia-Associated Genetic Loci , 2014, Nature.

[12]  J. Danesh,et al.  Large-scale association analysis identifies new risk loci for coronary artery disease , 2013 .

[13]  Tanya M. Teslovich,et al.  Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes , 2012, Nature Genetics.

[14]  Ayellet V. Segrè,et al.  Hundreds of variants clustered in genomic loci and biological pathways affect human height , 2010, Nature.

[15]  Jing Cui,et al.  Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci , 2010, Nature Genetics.

[16]  D. Kuonen Saddlepoint approximations for distributions of quadratic forms in normal variables , 1999 .

[17]  R. Davies The distribution of a linear combination of 2 random variables , 1980 .

[18]  R. Davies Numerical inversion of a characteristic function , 1973 .

[19]  J. Imhof Computing the distribution of quadratic forms in normal variables , 1961 .

[20]  H. Ruben,et al.  Probability Content of Regions Under Spherical Normal Distributions, IV: The Distribution of Homogeneous and Non-Homogeneous Quadratic Functions of Normal Variables , 1961 .

[21]  E. S. Pearson Note on an Approximation to the Distribution of Non-Central χ 2 , 1959 .

[22]  G. Box Some Theorems on Quadratic Forms Applied in the Study of Analysis of Variance Problems, I. Effect of Inequality of Variance in the One-Way Classification , 1954 .

[23]  B. L. Welch THE SIGNIFICANCE OF THE DIFFERENCE BETWEEN TWO MEANS WHEN THE POPULATION VARIANCES ARE UNEQUAL , 1938 .

[24]  E. Szigethy,et al.  Inflammatory bowel disease. , 2011, Pediatric clinics of North America.

[25]  Tanya M. Teslovich,et al.  Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index , 2010 .

[26]  F. Sebening,et al.  [Coronary artery disease]. , 1980, Verhandlungen der Deutschen Gesellschaft fur Herz- und Kreislaufforschung.

[27]  F. E. Satterthwaite An approximate distribution of estimates of variance components. , 1946, Biometrics.