ANALYSIS OF FLOW WITHIN PUMP IMPELLER OF TORQUE CONVERTER
暂无分享,去创建一个
It is difficult to measure flow patterns within rotating elements of a torque converter due to the complicated construction. Therefore, the numerical calculation is considered to be an effective tool to know the internal flow. Three-dimensional incompressible turbulent flow within a pump impeller of an automotive torque converter was analyzed numerically at three different speed ratios, 0.02, 0.4 and 0.8 under the same inlet boundary condition. The speed ratio was defined as the ratio of rotating speed of the turbine impeller to that of the pump. The governing equations using the k-e model in the physical component tensor form were solved with a boundary-fitted coordinate system fixed on a rotating impeller. The solution algorithm was the SIMPLE method applied to the curvilinear coordinate system. The computed results were compared with those obtained experimentally by an oil film flow visualization technique for the pressure, suction, core and shell surfaces. Moreover, the results at three different speed ratios were examined in detail in order to clarify the behavior of secondary flow patterns. The computed results showed good agreement with the experimental results and clarified the behavior of the complicated flow patterns. The secondary flow patterns were strongly influenced by the correlation between the intensities of the Corinlis force (COF) and the centrifugal force due to the passage curvature in the meridional plane (CMF).© 1996 ASME