The geometry of PLS1 explained properly: 10 key notes on mathematical properties of and some alternative algorithmic approaches to PLS1 modelling

The insight from, and conclusions of this paper motivate efficient and numerically robust ‘new’ variants of algorithms for solving the single response partial least squares regression (PLS1) problem. Prototype MATLAB code for these variants are included in the Appendix. The analysis of and conclusions regarding PLS1 modelling are based on a rich and nontrivial application of numerous key concepts from elementary linear algebra. The investigation starts with a simple analysis of the nonlinear iterative partial least squares (NIPALS) PLS1 algorithm variant computing orthonormal scores and weights.

[1]  N. Higham Efficient algorithms for computing the condition number of a tridagonal matrix , 1986 .

[2]  Anne-Laure Boulesteix,et al.  Partial least squares: a versatile tool for the analysis of high-dimensional genomic data , 2006, Briefings Bioinform..

[3]  S. Wold,et al.  The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses , 1984 .

[4]  Rolf Ergon,et al.  Re‐interpretation of NIPALS results solves PLSR inconsistency problem , 2009 .

[5]  Randy J. Pell,et al.  The model space in partial least squares regression , 2007 .

[6]  J. Friedman,et al.  A Statistical View of Some Chemometrics Regression Tools , 1993 .

[7]  A. Höskuldsson PLS regression methods , 1988 .

[8]  M. Forina,et al.  Multivariate calibration. , 2007, Journal of chromatography. A.

[9]  Rolf Ergon,et al.  Finding Y‐relevant part of X by use of PCR and PLSR model reduction methods , 2007 .

[10]  P. Garthwaite An Interpretation of Partial Least Squares , 1994 .

[11]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[12]  L. Eld Partial least-squares vs. Lanczos bidiagonalization—I: analysis of a projection method for multiple regression , 2004 .

[13]  R. Manne Analysis of two partial-least-squares algorithms for multivariate calibration , 1987 .

[14]  Barry M. Wise,et al.  The PLS model space revisited , 2009 .

[15]  Martin Andersson,et al.  A comparison of nine PLS1 algorithms , 2009 .

[16]  A. Phatak,et al.  The geometry of partial least squares , 1997 .

[17]  S. Wold,et al.  PLS-regression: a basic tool of chemometrics , 2001 .

[18]  H. Simon The Lanczos algorithm with partial reorthogonalization , 1984 .

[19]  B. AfeArd CALCULATING THE SINGULAR VALUES AND PSEUDOINVERSE OF A MATRIX , 2022 .

[20]  On the numerical stability of two widely used PLS algorithms , 2008 .

[21]  Rolf Ergon,et al.  PLS score–loading correspondence and a bi‐orthogonal factorization , 2002 .

[22]  S. Wold,et al.  The multivariate calibration problem in chemistry solved by the PLS method , 1983 .

[23]  Sijmen de Jong,et al.  The objective function of partial least squares regression , 1998 .

[24]  I. Helland Some theoretical aspects of partial least squares regression , 2001 .

[25]  R. Larsen Lanczos Bidiagonalization With Partial Reorthogonalization , 1998 .

[26]  S. D. Jong SIMPLS: an alternative approach to partial least squares regression , 1993 .

[27]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[28]  Lars Eldén,et al.  Partial least-squares vs. Lanczos bidiagonalization - I: analysis of a projection method for multiple regression , 2004, Comput. Stat. Data Anal..

[29]  I. Helland ON THE STRUCTURE OF PARTIAL LEAST SQUARES REGRESSION , 1988 .

[30]  Rolf Manne,et al.  The PLS model space: the inconsistency persists , 2009 .