An improved grey wolf optimizer algorithm for the inversion of geoelectrical data

The grey wolf optimizer (GWO) is a novel bionics algorithm inspired by the social rank and prey-seeking behaviors of grey wolves. The GWO algorithm is easy to implement because of its basic concept, simple formula, and small number of parameters. This paper develops a GWO algorithm with a nonlinear convergence factor and an adaptive location updating strategy and applies this improved grey wolf optimizer (improved grey wolf optimizer, IGWO) algorithm to geophysical inversion problems using magnetotelluric (MT), DC resistivity and induced polarization (IP) methods. Numerical tests in MATLAB 2010b for the forward modeling data and the observed data show that the IGWO algorithm can find the global minimum and rarely sinks to the local minima. For further study, inverted results using the IGWO are contrasted with particle swarm optimization (PSO) and the simulated annealing (SA) algorithm. The outcomes of the comparison reveal that the IGWO and PSO similarly perform better in counterpoising exploration and exploitation with a given number of iterations than the SA.

[1]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[2]  Wei Cai,et al.  Grey Wolf Optimizer for parameter estimation in surface waves , 2015 .

[3]  Urvinder Singh,et al.  Modified Grey Wolf Optimizer for Global Engineering Optimization , 2016, Appl. Comput. Intell. Soft Comput..

[4]  Debasish Ghose,et al.  Glowworm swarm based optimization algorithm for multimodal functions with collective robotics applications , 2006, Multiagent Grid Syst..

[5]  Vikram Kumar Kamboj,et al.  Solution of non-convex economic load dispatch problem using Grey Wolf Optimizer , 2015, Neural Computing and Applications.

[6]  Michael S. Zhdanov,et al.  Electromagnetic geophysics: Notes from the past and the road ahead , 2010 .

[7]  D. Oldenburg,et al.  Magnetotelluric appraisal using simulated annealing , 1991 .

[8]  X Shi MULTISCALE GENETIC ALGORITHM AND ITS APPLICATION IN MAGNETOTELLURIC SOUNDING DATA INVERSION , 2000 .

[9]  Seyed Mohammad Mirjalili,et al.  Multi-Verse Optimizer: a nature-inspired algorithm for global optimization , 2015, Neural Computing and Applications.

[10]  Mohd Herwan Sulaiman,et al.  Using the gray wolf optimizer for solving optimal reactive power dispatch problem , 2015, Appl. Soft Comput..

[11]  Xin-She Yang,et al.  Bat algorithm for multi-objective optimisation , 2011, Int. J. Bio Inspired Comput..

[12]  Geophysical application of Generalized Inverse Theory , 1969 .

[13]  Jun Wu,et al.  Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC , 2015 .

[14]  Seyed Mohammad Mirjalili,et al.  The Ant Lion Optimizer , 2015, Adv. Eng. Softw..

[15]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[16]  F. Simpson,et al.  Practical Magnetotellurics: References , 2005 .

[17]  Hui Yang,et al.  Constrained Joint Inversion of Magneto-telluric and Seismic Data Using Simulated Annealing Algorithm , 2002 .

[18]  Seyed Mohammad Mirjalili How effective is the Grey Wolf optimizer in training multi-layer perceptrons , 2014, Applied Intelligence.

[19]  A. N. Jadhav,et al.  WGC: Hybridization of exponential grey wolf optimizer with whale optimization for data clustering , 2017, Alexandria Engineering Journal.

[20]  Lev Eppelbaum,et al.  Estimation of geothermal gradients from single temperature log-field cases , 2009 .

[21]  Parham Pahlavani,et al.  An efficient modified grey wolf optimizer with Lévy flight for optimization tasks , 2017, Appl. Soft Comput..

[22]  Dinesh Kumar,et al.  An astrophysics-inspired Grey wolf algorithm for numerical optimization and its application to engineering design problems , 2017, Adv. Eng. Softw..

[23]  Wen-Tsao Pan,et al.  A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example , 2012, Knowl. Based Syst..

[24]  Sven Treitel,et al.  Cooperative inversion of geophysical data , 1988 .

[25]  R. Shaw,et al.  Particle swarm optimization : A new tool to invert geophysical data , 2007 .

[26]  Thomas Stützle,et al.  The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances , 2003 .

[27]  Sirapat Chiewchanwattana,et al.  An improved grey wolf optimizer for training q-Gaussian Radial Basis Functional-link nets , 2014, 2014 International Computer Science and Engineering Conference (ICSEC).

[28]  Stefano Parolai,et al.  Joint inversion of phase velocity dispersion and H/V ratio curves from seismic noise recordings using a genetic algorithm, considering higher modes , 2005 .

[29]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[30]  A. Kishk,et al.  Investigation of the quantum particle swarm optimization technique for electromagnetic applications , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[31]  Shangxu Wang,et al.  Ant Colony Optimization For the Seismic Nonlinear Inversion , 2005 .

[32]  Mrinal K. Sen,et al.  Rapid sampling of model space using genetic algorithms: examples from seismic waveform inversion , 1992 .

[33]  P. Alotto,et al.  Global Optimization of Electromagnetic Devices Using an Exponential Quantum-Behaved Particle Swarm Optimizer , 2008, IEEE Transactions on Magnetics.

[34]  Michael W. Asten,et al.  Metalliferous mining geophysics—State of the art in the last decade of the 20th century and the beginning of the new millennium , 2002 .

[35]  Jinlian Wang,et al.  2-D MT inversion using genetic algorithm , 2005 .

[36]  K. Vozoff,et al.  The joint use of coincident loop transient electromagnetic and Schlumberger sounding to resolve layered structures , 1985 .

[37]  Xin-She Yang,et al.  Bat algorithm: a novel approach for global engineering optimization , 2012, 1211.6663.

[38]  Al-Attar Ali Mohamed,et al.  Design static VAR compensator controller using artificial neural network optimized by modify Grey Wolf Optimization , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).

[39]  Hossein Nezamabadi-pour,et al.  BGSA: binary gravitational search algorithm , 2010, Natural Computing.

[40]  R. Coppinger,et al.  Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations , 2011, Behavioural Processes.

[41]  Miaoyue Wang,et al.  Simulated annealing for controlled-source audio-frequency magnetotelluric data inversion , 2012 .

[42]  David L.B. Jupp,et al.  Joint Inversion of Geophysical Data , 2007 .

[43]  K N Krishnanand,et al.  Glowworm Swarm Optimization : A Multimodal Function Optimization Paradigm With Applications To Multiple Signal Source Localization Tasks , 2007 .

[44]  Qiang Zhang,et al.  The variation step adaptive Glowworm swarm optimization algorithm in optimum log interpretation for reservoir with complicated lithology , 2016, 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD).