Reply to the comment on "Orbitally forced climate and sea-level changes in the Paleoceanic Tethyan domain (marl-limestone alternations, Lower Kimmeridgian, SE

Available online 27 April 2011 In their comment on our paper (Boulila S. et al. 2010 — Orbitally forced climate and sea-level changes in the Paleoceanic Tethyan domain, marl–limestone alternations, Lower Kimmeridgian, SE France, Palaeogeog. Palaeoclim. Palaeoecol., 292, 57–70), Mattioli and co-authors (E. Mattioli et al., Comment on "Orbitally forced climate and sea-level changes in the Paleoceanic Tethyan domain (marl–limestone alternations, Lower Kimmeridgian, SE France) " by S. Boulila, M. de Rafelis, L. A. Hinnov, S. Gardin, B. Galbrun, P.-Y. Collin [Palaeogeography Palaeoclimatology Palaeoecology 292 (2010) 57–70], Palaeogeography Palaeoclimatology Palaeoecology, this issue) criticize our depositional model of Lower Kimmeridgian marl-limestone alternations in the Vocontian Basin (SE France) and contest the nannofossil contribution to the build-up of micritic limestones. The model that we proposed links maxima of orbitally forced insolation with high sealevel, weaker continental erosion, and reduced detrital input, and insolation minima to low sea-level, increasing erosion of detrital materials and their transport to the basin. This involves a competition between multiple variable fluxes, and is supported by a multi-proxy study (magnetic susceptibility, weight percent carbonate, manganese content coupled with cathodoluminescence analysis, oxygen and carbon stable isotopes, and calcareous nannofossil analysis) on a 8.5-m thick interval from a ~40 m-thick section at Châteauneuf-d'Oze (SE France). This differs substantially from previous models suggesting that detrital input to this part of the Vocontian Basin constitutes ‘background noise’, and that the main mechanism inducing the marl–limestone rhythms was orbitally forced carbonate mud export from the Jura Platform. © 2011 Elsevier B.V. All rights reserved.

[1]  L. Hinnov,et al.  Orbitally forced climate and sea-level changes in the Paleoceanic Tethyan domain (marl-limestone alternations, Lower Kimmeridgian, SE France) , 2010 .

[2]  L. Hinnov,et al.  Orbital calibration of the Early Kimmeridgian (southeastern France): implications for geochronology and sequence stratigraphy , 2008 .

[3]  L. Hinnov,et al.  High-resolution cyclostratigraphic analysis from magnetic susceptibility in a Lower Kimmeridgian (Upper Jurassic) marl–limestone succession (La Méouge, Vocontian Basin, France) , 2008 .

[4]  A. Strasser Astronomical time scale for the Middle Oxfordian to Late Kimmeridgian in the Swiss and French Jura Mountains , 2007 .

[5]  E. Mattioli,et al.  Nannofacies analysis as a tool to reconstruct paleoenvironmental changes during the Early Toarcian anoxic event , 2007 .

[6]  H. Westphal Limestone–marl alternations as environmental archives and the role of early diagenesis: a critical review , 2006 .

[7]  T. Aigner,et al.  Delineating Sequence Stratigraphic Patterns in Deeper Ramp Carbonates: Quantitative Palynofacies Data from the Upper Jurassic (Kimmeridgian) of Southwest Germany , 2006 .

[8]  I. Probert,et al.  A review of selected aspects of coccolithophore biology with implications for paleobiodiversity estimation , 2005 .

[9]  E. Erba,et al.  Nannofossil carbonate fluxes during the Early Cretaceous: Phytoplankton response to nutrification episodes, atmospheric CO2, and anoxia , 2004 .

[10]  A. Strasser,et al.  Depositional sequences in the Kimmeridgian of the Vocontian Basin (France) controlled by carbonate export from shallow-water platforms , 2003 .

[11]  J. Mutterlose,et al.  The impact of calcareous nannofossils on the pelagic carbonate accumulation across the Jurassic–Cretaceous boundary , 2003 .

[12]  Claude Colombié Sédimentologie, stratigraphie séquentielle et cyclostratigraphie du Kimméridgien du Jura suisse et du Bassin vocontien (France) : relations plate-forme - bassin et facteurs déterminants. , 2002 .

[13]  A. Strasser,et al.  Depositional Sequences in Deep-Shelf Environments: A Response to Sea-Level Changes and Shallow-Platform Carbonate Productivity (Oxfordian, Germany and Spain) , 2000 .

[14]  A. Strasser,et al.  Depositional sequences in shallow carbonate-dominated sedimentary systems: concepts for a high-resolution analysis , 1999 .

[15]  G. Busson,et al.  Les coccolithophoridees, contributeurs essentiels de la fraction calcaire des sediments marins du Jurassique moyen-superieur; contraste entre les populations des calcaires et des marnes , 1997 .

[16]  A. Munnecke,et al.  The formation of micritic limestones and the development of limestone-marl alternations in the Silurian of Gotland, Sweden , 1996 .

[17]  D. Noël,et al.  Contribution fondamentale desCoccolithophoridées a la constitution des calcaires fins pélagiques du Jurassique moyen et supérieur , 1994 .

[18]  E. Erba Nannofossils and superplumes: The Early Aptian “nannoconid crisis” , 1994 .

[19]  J. Breheret L'Empreinte de la diagenese precoce sur les periodites a dominante calcaire dans les marnes bleues de l'Aptien-Albien du domaine vocontien (bassin du sud-est de la France) , 1994 .

[20]  P. H. Roth,et al.  Stable isotopic and carbonate cyclicity in Lower Cretaceous deep-sea sediments: Dominance of diagenetic effects , 1991 .

[21]  G. Busson,et al.  Les nannoconidés, indicateurs environnementaux des océans et mers épicontinentales du jurassique terminal et du Crétacé inférieur , 1991 .

[22]  W. Ricken The carbonate compaction law: a new tool , 1987 .

[23]  E. Flügel,et al.  Coccolithen-Diagenese in Malm-Kalken (Solnhofen/Frankenalb, Oberalm/Salzburg) , 1979 .

[24]  T. Worsley Calcareous Nannofossils: Leg 19 of the Deep Sea Drilling Project , 1973 .

[25]  P. Scholle Diagenesis of deep-water carbonate turbidites, upper Cretaceous Monte Antola flysch, northern Apennines, Italy , 1971 .

[26]  P. Scholle Sedimentology of Fine-Grained Deep-Water Carbonate Turbidites, Monte Antola Flysch (Upper Cretaceous), Northern Apennines, Italy , 1971 .

[27]  G. Busson,et al.  Le nannoplancton calcaire et la formation des alternances calcaires-marnes dans le lias des bassins de Marches-Ombrie (Italie) , 1993 .

[28]  E. Erba Calcareous nannofossil distribution in pelagic rhythmic sediments (Aptian-Albian Piobbico core, central Italy) , 1992 .

[29]  G. Busson,et al.  L'importance des schizosphères, stomiosphères, Conusphaera et Nannoconus dans la genèse des calcaires fins pélagiques du Jurassique et du Crétacé inférieur / Importance of schizospheres, stomiospheres, Conusphaera and Nannoconus in the genesis of Jurassic and Early Cretaceous fine-grained pelagic li , 1990 .

[30]  G. Chilingarian,et al.  Diagenesis in sediments and sedimentary rocks , 1979 .

[31]  M. Melguen,et al.  Nannofacies of cape basin and walvis ridge sediments, lower cretaceous to pliocene (leg 40) , 1978 .