Low dispersive modeling of Rayleigh waves on partly staggered grids

In elastic media, finite-difference (FD) implementations of free-surface (FS) boundary conditions on partly staggered grid (PSG) use the highly dispersive vacuum formulation (VPSG). The FS boundary is embedded into a “vacuum” grid layer (null Lame’s constants and negligible density values) where the discretized equations of motion allow computing surface displacements. We place a new set of compound (stress-displacement) nodes along a planar FS and use unilateral mimetic FD discretization of the zero-traction conditions for displacement computation (MPSG). At interior nodes, MPSG reduces to standard VPSG methods and applies fourth-order centered FD along cell diagonals for staggered differentiation combined with nodal second-order FD in time. We perform a dispersion analysis of these methods on a Lamb’s problem and estimate dispersion curves from the phase difference of windowed numerical Rayleigh pulses at two FS receivers. For a given grid sampling criterion (e.g., six or ten nodes per reference S wavelength λS), MPSG dispersion errors are only a quarter of the VPSG method. We also quantify root-mean-square (RMS) misfits of numerical time series relative to analytical waveforms. MPSG RMS misfits barely exceed 10 % when nine nodes sample the minimum S wavelength λMINS$\lambda _{\text {MIN}}^{\mathrm {S}}$ in transit (along distances ∼$\sim $145λMINS$\lambda _{\text {MIN}}^{\mathrm {S}}$). In same tests, VPSG RMS misfits exceed 70 %. We additionally compare MPSG to a consistently fourth-order mimetic method designed on a standard staggered grid. The latter equates the former’s dispersion errors on grids twice denser and shows higher RMS precision only on grids with six or less nodes per λMINS$\lambda _{\text {MIN}}^{\mathrm {S}}$.

[1]  Luis A. Dalguer,et al.  Finite difference modelling of rupture propagation with strong velocity-weakening friction , 2009 .

[2]  Hideo Aochi,et al.  3D finite-difference dynamic-rupture modeling along nonplanar faults , 2007 .

[3]  A. Levander Fourth-order finite-difference P-SV seismograms , 1988 .

[4]  Erik H. Saenger,et al.  Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid , 2004 .

[5]  The finite-difference method for seismologists ; an introduction , 2004 .

[6]  Zhang Jianfeng,et al.  Quadrangle-grid velocity-stress finite-difference method for elastic-wave-propagation simulation , 1997 .

[7]  S. Shapiro,et al.  Modeling the propagation of elastic waves using a modified finite-difference grid , 2000 .

[8]  J. Kristek,et al.  The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion , 2007 .

[9]  Zoltan A. Der,et al.  Free-boundary conditions of arbitrary polygonal topography in a two-dimensional explicit elastic finite-difference scheme , 1988 .

[10]  P. Maechling,et al.  Strong shaking in Los Angeles expected from southern San Andreas earthquake , 2006 .

[11]  Shuo Ma,et al.  Hybrid Modeling of Elastic P-SV Wave Motion: A Combined Finite-Element and Staggered-Grid Finite-Difference Approach , 2004 .

[12]  R. G. Stockwell,et al.  An unusual mesospheric bore event observed at high latitudes over Antarctica , 2006 .

[13]  S. Day Three-dimensional simulation of spontaneous rupture: The effect of nonuniform prestress , 1982 .

[14]  S. M. Day,et al.  Finite element analysis of seismic scattering problems , 1977 .

[15]  Robert W. Graves,et al.  Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences , 1996, Bulletin of the Seismological Society of America.

[16]  Johan O. A. Robertsson,et al.  A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography , 1996 .

[17]  Paul G. Richards,et al.  Quantitative Seismology: Theory and Methods , 1980 .

[18]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[19]  Peter Moczo,et al.  Testing four elastic finite-difference schemes for behavior at discontinuities , 1993 .

[20]  S. Operto,et al.  Numerical Modeling of Surface Waves Over Shallow Cavities , 2005 .

[21]  Changsoo Shin,et al.  Free-Surface Boundary Condition in Finite-Difference Elastic Wave Modeling , 2004 .

[22]  Luis A. Dalguer,et al.  Modelling of rupture propagation using high‐order mimetic finite differences , 2008 .

[23]  H. Calandra,et al.  Identification of image artifacts from internal multiples , 2007 .

[24]  Peter Moczo,et al.  Efficient Methods to Simulate Planar Free Surface in the 3D 4th-Order Staggered-Grid Finite-Difference Schemes , 2002 .

[25]  Erik H. Saenger,et al.  Accuracy of heterogeneous staggered-grid finite-difference modeling of Rayleigh waves , 2006 .

[26]  Jean Virieux,et al.  Free and smooth boundaries in 2-D finite-difference schemes for transient elastic waves , 2007, 0706.3825.

[27]  Ladislav Halada,et al.  3D Fourth-Order Staggered-Grid Finite-Difference Schemes: Stability and Grid Dispersion , 2000 .

[28]  Mikhail Shashkov,et al.  Fourth- and sixth-order conservative finite difference approximations of the divergence and gradient , 2001 .

[29]  D. J. Andrews,et al.  A numerical study of tectonic stress release by underground explosions , 1973 .

[30]  Jean Virieux,et al.  Dynamic rupture simulation of non-planar faults with a finite-difference approach , 2004 .

[31]  T. Lay,et al.  Modern Global Seismology , 1995 .

[32]  Ekkehart Tessmer,et al.  3-D elastic modeling with surface topography by a Chebychev spectral method , 1994 .

[33]  J. E. Castillo,et al.  A Matrix Analysis Approach to Higher-Order Approximations for Divergence and Gradients Satisfying a Global Conservation Law , 2003, SIAM J. Matrix Anal. Appl..

[34]  Arben Pitarka,et al.  3D Elastic Finite-Difference Modeling of Seismic Motion Using Staggered Grids with Nonuniform Spacing , 1999 .

[35]  R. Madariaga Dynamics of an expanding circular fault , 1976, Bulletin of the Seismological Society of America.

[36]  Ellen Gottschämmer,et al.  Accuracy of the Explicit Planar Free-Surface Boundary Condition Implemented in a Fourth-Order Staggered-Grid Velocity-Stress Finite-Difference Scheme , 2001 .

[37]  Jean Virieux,et al.  SH-wave propagation in heterogeneous media: velocity-stress finite-difference method , 1984 .

[38]  Wei Zhang,et al.  Traction image method for irregular free surface boundaries in finite difference seismic wave simulation , 2006 .