Observing the Troposphere through the Advanced Technology Microwave Sensor (ATMS) to Retrieve Rain Rate

Atmospheric remote sensing techniques have become popular in the field of meteorology due to both the generation of spectral information of the atmosphere and the cover of wide regions in short periods of time. In this work, some relevant features about the Advance Technology Microwave Sounder (ATMS) are highlighted, in order to establish some basic criterias for assimilation and use of passive microwave data into algorithms to retrieve rain rate from spaceborne. In addition, an intercomparison with the Advance Microwave Unit Sensor (AMSU) is presented.

[1]  E. Barrett,et al.  THE ESTIMATION OF MONTHLY RAINFALL FROM SATELLITE DATA , 1970 .

[2]  Mitchell D. Goldberg,et al.  An Example of Temperature Structure Differences in Two Cyclone Systems Derived from the Advanced Microwave Sounder Unit , 2000 .

[3]  David H. Staelin,et al.  AIRS/AMSU/HSB precipitation estimates , 2003, IEEE Trans. Geosci. Remote. Sens..

[5]  C. Bohren,et al.  An introduction to atmospheric radiation , 1981 .

[6]  F. Marzano,et al.  Results of WetNet PIP2 Project , 1998 .

[7]  K. Okamoto,et al.  Rain profiling algorithm for the TRMM precipitation radar , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[8]  P. Bauer,et al.  Algorithms for the retrieval of rainfall from passive microwave measurements , 1994 .

[9]  W. Menzel,et al.  Introducing GOES-I: The First of a New Generation of Geostationary Operational Environmental Satellites , 1994 .

[10]  E. Barrett Satellite rainfall monitoring: recent progress and remaining problems , 1997 .

[11]  Steven P. Neeck,et al.  Global Precipitation Measurement (GPM) L-6 , 2013, Remote Sensing.

[12]  Mario A. Lanfri,et al.  Advances on Rain Rate Retrieval from Satellite Platforms using Artificial Neural Networks , 2015, IEEE Latin America Transactions.

[13]  M. Lethbridge PRECIPITATION PROBABILITY AND SATELLITE RADIATION DATA , 1967 .

[14]  Johannes Schmetz,et al.  Precipitation estimations from geostationary orbit and prospects for METEOSAT Second Generation , 2001 .

[15]  David H. Staelin,et al.  Precipitation observations near 54 and 183 GHz using the NOAA-15 satellite , 2000, IEEE Trans. Geosci. Remote. Sens..

[16]  Catherine Prigent,et al.  Precipitation retrieval from space: An overview , 2010 .

[17]  Vincenzo Levizzani,et al.  Satellite rainfall estimates: new perspectives for meteorology and climate from the EURAINSAT project , 2003 .

[18]  Paolo Sano,et al.  Combined MW-IR Precipitation Evolving Technique (PET) of convective rain fields , 2012 .

[19]  Vincenzo Levizzani,et al.  The 183-WSL fast rain rate retrieval algorithm: Part I: Retrieval design , 2011 .

[20]  Giulia Panegrossi,et al.  The Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for AMSU/MHS observations: description and application to European case studies , 2014 .

[21]  Chris Kidd,et al.  Satellite rainfall climatology: a review , 2001 .

[22]  C. Kummerow,et al.  The Tropical Rainfall Measuring Mission (TRMM) Sensor Package , 1998 .