Radiation effects in 1.06‐μm InGaAs LED’s and Si photodiodes

Because of the low‐intrinsic and radiation‐induced attenuation losses in glass fibers in the wavelength range 1.0–1.3 μm, emitters and detectors operating in this range are of practical importance for radiation‐environment applications. We have studied the effects of both γ and neutron irradiation on the properties of InGaAs LED’s emitting at 1.06 μm and Si photodiode detectors optimized for this wavelength. While the preirradiation light output of the InGaAs LED’s is low relative to many GaAs LED’s, the InGaAs devices exhibit less sensitivity to radiation than the most radiation‐hardened GaAs LED’s. No significant neutron‐induced light‐output degradation is observed below 1×1013 n/cm2, while 2×107 Co‐60 rads are required before any γ‐induced degradation is observed. In addition, a significant portion of the γ‐induced light‐output degradation can be recovered by applying forward‐bias currents of the order of 50 mA in magnitude. Although γ irradiation up to 2×108 rads has essentially no effect on the photo...

[1]  A. S. Epstein,et al.  Radiation Damage and Annealing Effects in Photon Coupled Isolators , 1972 .

[2]  R. Eden,et al.  Heterojunction III—V alloy photodetectors for high-sensitivity 1.06-µm optical receivers , 1975, Proceedings of the IEEE.

[3]  G. H. Sigel,et al.  Radiation Resistant Fiber Optic Materials and Waveguides , 1975, IEEE Transactions on Nuclear Science.

[4]  C. Barnes Neutron Damage in Epitaxial GaAs Laser Diodes , 1971 .

[5]  L. Aukerman,et al.  THE ROLE OF DIFFUSION CURRENT IN THE ELECTROLUMINESCENCE OF GaAs DIODES , 1964 .

[6]  J. Gannon,et al.  Metallurgical amd electroluminescence characteristics of vapor-phase and liquid-phase epitaxial junction structures of InxGa1−xAs , 1975 .

[7]  R. A. Polimadei,et al.  Effect of neutron irradiation on GaAs1−xPx electroluminescent diodes , 1973 .

[8]  R. A. Polimadei,et al.  Performance of Ga 1−x Al x As light emitting diodes in radiation environments , 1974 .

[9]  C. Nuese,et al.  Efficient 1.06-µm emission from In x Ga 1-x As electroluminescent diodes , 1972 .

[10]  C. M. Wolfe,et al.  GaAs waveguide detectors for 1.06 μm , 1977 .

[11]  R. G. Sommer,et al.  New glass system for low-loss optical waveguides , 1976 .

[12]  R. Goodfellow,et al.  High-radiance small-area gallium-indium-arsenide 1.06 μm light-emitting diodes , 1975 .

[13]  D. Lang,et al.  Recombination‐enhanced annealing of the E1 and E2 defect levels in 1‐MeV‐electron–irradiated n‐GaAs , 1976 .

[14]  C. Barnes,et al.  Neutron Irradiation Effects on Diffused GaAs Laser Diodes , 1971 .

[15]  B. D. Evans,et al.  Permanent and transient radiation induced losses in optical fibers , 1974 .

[16]  M. Horiguchi,et al.  Spectral losses of low-OH-content optical fibres , 1976 .

[17]  C. E. Barnes Development of Efficient, Radiation-Insensitive Gaas: Zn LEDs , 1977, IEEE Transactions on Nuclear Science.

[18]  J. A. Miller Maximally flat nonrecursive digital filters , 1972 .

[19]  A. S. Grove Physics and Technology of Semiconductor Devices , 1967 .

[20]  C. Barnes Neutron damage in GaP : Zn,O light‐emitting diodes , 1977 .

[21]  C. M. Wolfe,et al.  Schottky barrier InxGa1−xAs alloy avalanche photodiodes for 1.06 μm , 1974 .

[22]  B. L. Gregory,et al.  Application of Neutron Damage Models to Semiconductor Device Studies , 1970 .

[23]  L. W. Aukerman,et al.  Effects of Radiation Damage on the Behavior of GaAs p-n Junctions , 1966 .

[24]  R. A. Polimadei,et al.  Radiation Damage and Hardening Effects on Compensated GaAs Light-Emitting Diodes , 1973 .

[25]  C. E. Barnes,et al.  The Effect of Gamma Irradiation on Optical Isolators , 1975, IEEE Transactions on Nuclear Science.

[26]  R. Nahory,et al.  Efficient LPE‐grown Inx Ga1 −x As LEDs at 1–1.1‐μm wavelengths , 1974 .

[27]  Kazuhiro Daikoku,et al.  A proposal on optical fibre transmission systems in a low-loss 1.0–1.4 μm wavelength region , 1977 .

[28]  R. Maurer,et al.  Effect of neutron- and gamma-radiation on glass optical waveguides. , 1973, Applied optics.

[29]  P. L. Mattern,et al.  Absorption Induced in Optical Waveguides by Pulsed Electrons as a Function of Temperature, Low Dose Rate Gamma and Beta Rays, and 14 MeV Neutrons , 1975, IEEE Transactions on Nuclear Science.