Engineering Pseudosubstrates with Porous Silicon Technology

In this work, we use a controlled oxidation of a mesoporous silicon substrate as a tool for extending and adjusting the Si lattice parameter to other materials such as SixGe1-x. Our approach involves four steps. First, a seed film is epitaxially grown on a single-crystal Si(100) wafer by Molecular Beam Epitaxy(MBE). Second, porosification is performed according to a standard electrochemical etching procedure but using a “two wafers technique”. Third, the porous part of the sample is oxidized at mild temperatures (300–500°C) in a dry O2 atmosphere, inducing a substantial in-plane expansion of the seed film. Fourth, an overgrowth by MBE of an epilayer is done to test the thus-obtained pseudosubstrate. The challenging task in this last step is to deoxidize the seed film surface at ~900°C without losing the strain induced by oxidation of the porous part of the sample.

[1]  Fabrication of dislocation-free tensile strained Si thin films using controllably oxidized porous Si substrates , 2006 .

[2]  Gustaaf Borghs,et al.  Metamorphic InGaAs/InAlAs quantum well structures grown on GaAs substrates for high electron mobility transistor applications , 1998 .

[3]  Zhigang Suo,et al.  Kinetics of buckling of a compressed film on a viscous substrate , 2001 .

[4]  L. B. Freund,et al.  A critical thickness condition for a strained compliant substrate/epitaxial film system , 1996 .

[5]  Pierre Petroff,et al.  Effect of uniaxial stress on excitons in a self-assembled quantum dot , 2006 .

[6]  X-ray diffraction investigation of n type porous silicon , 2001 .

[7]  J. Leclercq,et al.  High-quality fully relaxed In0.65Ga0.35As layers grown on InP using the paramorphic approach , 1999 .

[8]  E. Martincic,et al.  Control of direct band gap emission of bulk germanium by mechanical tensile strain , 2010 .

[9]  C. K. Inoki,et al.  Strain relaxation of SiGe islands on compliant oxide , 2002 .

[10]  Philippe Regreny,et al.  Tensile strain engineering of Si thin films using porous Si substrates , 2010 .

[11]  A. Danescu The Asaro–Tiller–Grinfeld instability revisited , 2001 .

[12]  U. Gösele,et al.  Twist wafer bonded “fixed-film” versus “compliant” substrates: correlated misfit dislocation generation and contaminant gettering , 1997 .

[13]  F. H. Dacol,et al.  Measurements of alloy composition and strain in thin GexSi1−x layers , 1994 .

[14]  Vladimir Lysenko,et al.  Straining of monocrystalline silicon thin films with the use of porous silicon as stress generating nanomaterial , 2006 .

[15]  K. Barla,et al.  Determination of lattice parameter and elastic properties of porous silicon by X-ray diffraction , 1984 .

[16]  U. Gösele,et al.  Principles of strain relaxation in heteroepitaxial films growing on compliant substrates , 2000 .

[17]  Nikolai N. Ledentsov,et al.  Quantum dot heterostructures , 1999 .

[18]  Peng Huei Lim,et al.  Enhanced direct bandgap emission in germanium by micromechanical strain engineering. , 2009, Optics express.

[19]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[20]  T. Langdo,et al.  The Crystallographic Properties of Strained Silicon Measured by X-Ray Diffraction , 2006 .

[21]  Jurgen Michel,et al.  Totally relaxed GexSi1−x layers with low threading dislocation densities grown on Si substrates , 1991 .

[22]  A. Danescu,et al.  Modeling macroscopic elasticity of porous silicon , 2009 .

[23]  Felix Ejeckam,et al.  Dislocation-free InSb grown on GaAs compliant universal substrates , 1997 .

[24]  A. Danescu,et al.  Macroscopic Elasticity of Nanoporous Silicon: Bulk and Surface Effects , 2009 .

[25]  W. Tiller,et al.  Interface morphology development during stress corrosion cracking: Part I. Via surface diffusion , 1972 .

[26]  P. Müller,et al.  The physical origin of the two-dimensional towards three-dimensional coherent epitaxial Stranski-Krastanov transition , 1996 .

[27]  Leigh T. Canham,et al.  Properties of Porous Silicon , 1998 .

[28]  P. Demeester,et al.  Compliant substrate technology: Integration of mismatched materials for opto-electronic applications , 2000 .

[29]  Fritz J. Kub,et al.  Compliant substrates: A comparative study of the relaxation mechanisms of strained films bonded to high and low viscosity oxides , 2000 .

[30]  Felix Ejeckam,et al.  Growth of InGaAs multi-quantum wells at 1.3 μm wavelength on GaAs compliant substrates , 1998 .

[31]  S. D. Roh,et al.  Long-wavelength InGaAs quantum wells grown without strain-induced warping on InGaAs compliant membranes above a GaAs substrate , 1999 .

[32]  Y. Lo,et al.  New approach to grow pseudomorphic structures over the critical thickness , 1991 .

[33]  J. Tersoff,et al.  Competing relaxation mechanisms in strained layers. , 1994, Physical review letters.

[34]  Frank Fournel,et al.  Ordering of Ge quantum dots with buried Si dislocation networks , 2002 .

[35]  U. Gösele,et al.  A model of strain relaxation in hetero-epitaxial films on compliant substrates , 1998 .

[36]  D. Tan,et al.  Mechanical and Thermal Properties , 2010 .

[37]  M. Lee,et al.  Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors , 2005 .

[38]  Kaoru Inoue,et al.  High-quality InxGa1−xAs/InAlAs modulation-doped heterostructures grown lattice-mismatched on GaAs substrates , 1991 .

[39]  J. W. Matthews,et al.  Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .

[40]  J. W. Matthews,et al.  Defects in epitaxial multilayers , 1974 .

[41]  Richard A. Soref,et al.  Advances in SiGeSn technology , 2007 .

[42]  Felix Ejeckam,et al.  Lattice engineered compliant substrate for defect-free heteroepitaxial growth , 1997 .

[43]  John E. Ayers,et al.  Compliant Substrates for Heteroepitaxial Semiconductor Devices: Theory, Experiment, and Current Directions , 2008 .

[44]  David J. Srolovitz,et al.  ON THE STABILITY OF SURFACES OF STRESSED SOLIDS , 1989 .

[45]  G. Fishman,et al.  Band structure and optical gain of tensile-strained germanium based on a 30 band k⋅p formalism , 2010 .

[46]  G. L. Christenson,et al.  Overcoming the pseudomorphic critical thickness limit using compliant substrates , 1994 .

[47]  A. Bourret,et al.  Compliant substrates: a review on the concept, techniques and mechanisms , 2000 .

[48]  J. M. Moison,et al.  Self‐organized growth of regular nanometer‐scale InAs dots on GaAs , 1994 .

[49]  M. Nicolet,et al.  Strain in porous Si with and without capping layers , 1991 .

[50]  J. Hartmann,et al.  Gas-source molecular beam epitaxy of SiGe virtual substrates: II. Strain relaxation and surface morphology , 2000 .

[51]  D. Bellet,et al.  X-ray diffraction studies of porous silicon , 1996 .

[52]  P. N. Keating,et al.  Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure , 1966 .

[53]  Z. Suo,et al.  Relaxation of compressed elastic islands on a viscous layer , 2002 .

[54]  Straining of thin Si films by partially oxidized meso‐porous Si substrates , 2009 .

[55]  A. Bourret How to control the self-organization of nanoparticles by bonded thin layers , 1999 .

[56]  W. Doolittle,et al.  The status and promise of compliant substrate technology , 2000 .