Short-time special affine Fourier transform for quaternion-valued functions

[1]  Hari M. Srivastava,et al.  Non-Separable Linear Canonical Wavelet Transform , 2021, Symmetry.

[2]  H. M. Srivastava,et al.  A framework of linear canonical Hankel transform pairs in distribution spaces and their applications , 2021, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[3]  Shenzhou Zheng,et al.  Uncertainty principles for the two‐sided offset quaternion linear canonical transform , 2021, Mathematical Methods in the Applied Sciences.

[4]  Aajaz A. Teali,et al.  Linear Canonical Wavelet Transform in Quaternion Domains , 2021 .

[5]  Firdous A. Shah,et al.  Special affine wavelet transform and the corresponding Poisson summation formula , 2020, Int. J. Wavelets Multiresolution Inf. Process..

[6]  Bingzhao Li,et al.  Quaternion Windowed Linear Canonical Transform of Two-Dimensional Signals , 2020 .

[7]  Aajaz A. Teali,et al.  Windowed special affine Fourier transform , 2020 .

[8]  Pan Lian,et al.  Uncertainty principle for the quaternion Fourier transform , 2018, Journal of Mathematical Analysis and Applications.

[9]  E. Hitzer,et al.  Generalized uncertainty principles associated with the quaternionic offset linear canonical transform , 2018, Complex Variables and Elliptic Equations.

[10]  Ran Tao,et al.  Convolution and correlation theorems for Wigner-Ville distribution associated with the offset linear canonical transform , 2018 .

[11]  Lokenath Debnath,et al.  Lecture Notes on Wavelet Transforms , 2017 .

[12]  Ayush Bhandari,et al.  Shift-Invariant and Sampling Spaces Associated with the Special Affine Fourier Transform , 2016, Applied and Computational Harmonic Analysis.

[13]  Sos S. Agaian,et al.  Quaternion Fourier transform based alpha-rooting method for color image measurement and enhancement , 2015, Signal Process..

[14]  Stephen J. Sangwine,et al.  Quaternion and Clifford Fourier Transforms and Wavelets , 2013 .

[15]  Kaiyu Qin,et al.  Multichannel Sampling of Signals Band-Limited in Offset Linear Canonical Transform Domains , 2013, Circuits Syst. Signal Process..

[16]  Qiang Xiang,et al.  Multichannel Sampling of Signals Band-Limited in Offset Linear Canonical Transform Domains , 2013, Circuits, Systems, and Signal Processing.

[17]  Henning Rasmussen,et al.  Local quaternion Fourier transform and color image texture analysis , 2010, Signal Process..

[18]  Rémi Vaillancourt,et al.  Windowed Fourier transform of two-dimensional quaternionic signals , 2010, Appl. Math. Comput..

[19]  Eduardo Bayro-Corrochano,et al.  Quaternion Fourier Descriptors for the Preprocessing and Recognition of Spoken Words Using Images of Spatiotemporal Representations , 2007, Journal of Mathematical Imaging and Vision.

[20]  Soo-Chang Pei,et al.  Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[21]  L. Cai,et al.  Special affine Fourier transformation in frequency-domain , 2000 .

[22]  G. Folland,et al.  The uncertainty principle: A mathematical survey , 1997 .

[23]  William Beckner,et al.  Pitt’s inequality and the uncertainty principle , 1995 .

[24]  John T. Sheridan,et al.  Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation. , 1994, Optics letters.

[25]  Y. S. Hamed,et al.  Link theorem and distributions of solutions to uncertain Liouville-Caputo difference equations , 2021, Discrete & Continuous Dynamical Systems - S.

[26]  Lei Huang,et al.  Nonuniform Sampling Theorems for Bandlimited Signals in the Offset Linear Canonical Transform , 2018, Circuits Syst. Signal Process..

[27]  J. Morais,et al.  Real quaternionic calculus handbook , 2014 .

[28]  Elke Wilczok,et al.  New uncertainty principles for the continuous Gabor transform and the continuous wavelet transform , 2000, Documenta Mathematica.