Complete convergence for arrays

Let {(Xnk, 1≤k≤n),n≥1}, be an array of rowwise independent random variables. We extend and generalize some recent results due to Hu, Móricz and Taylor concerning complete convergence, in the sense of Hsu and Robbins, of the sequence of rowwise arithmetic means.

[1]  Olle Nerman,et al.  On the convergence of supercritical general (C-M-J) branching processes , 1981 .

[2]  Leonard E. Baum,et al.  Convergence rates in the law of large numbers , 1965 .

[3]  J. Marcinkiewicz Sur les fonctions indépendantes , 1938 .

[4]  Necessary and Sufficient Conditions for Complete Convergence in the Law of Large Numbers , 1980 .

[5]  F. Spitzer A Combinatorial Lemma and its Application to Probability Theory , 1956 .

[6]  Ferenc Móricz,et al.  Strong laws of large numbers for arrays of rowwise independent random variables , 1989 .

[7]  A. Gut The weak law of large numbers for arrays , 1992 .

[8]  Paul Erdös,et al.  On a Theorem of Hsu and Robbins , 1949 .

[9]  M. Katz,et al.  The Probability in the Tail of a Distribution , 1963 .

[10]  H Robbins,et al.  Complete Convergence and the Law of Large Numbers. , 1947, Proceedings of the National Academy of Sciences of the United States of America.

[11]  J. Marcinkiewicz,et al.  Quelques théorèmes sur les fonctions indépendantes , 1938 .

[12]  A. Gut Marcinkiewicz Laws and Convergence Rates in the Law of Large Numbers for Random Variables with Multidimensional Indices , 1978 .

[13]  Y. S. Chow Some Convergence Theorems for Independent Random Variables , 1966 .

[14]  J. Hoffmann-jorgensen Sums of independent Banach space valued random variables , 1974 .

[15]  Kai Lai Chung,et al.  A Course in Probability Theory , 1949 .

[16]  P. Erdos Remark on my Paper "On a Theorem of Hsu and Robbins" , 1950 .

[17]  Michel Loève,et al.  Probability Theory I , 1977 .