The Visual-Inertial-Dynamical Multirotor Dataset

Recently, the community has witnessed numerous datasets built for developing and testing state estimators. However, for some applications such as aerial transportation or search-and-rescue, the contact force or other disturbance must be perceived for robust planning and control, which is beyond the capacity of these datasets. This paper introduces a Visual-Inertial-Dynamical (VID) dataset, not only focusing on traditional six degrees of freedom (6-DOF) pose estimation but also providing dynamical characteristics of the flight platform for external force perception or dynamics-aided estimation. The VID dataset contains hardware synchronized imagery and inertial measurements, with accurate ground truth trajectories for evaluating common visual-inertial estimators. Moreover, the proposed dataset highlights rotor speed and motor current measurements, control inputs, and ground truth 6-axis force data to evaluate external force estimation. To the best of our knowledge, the proposed VID dataset is the first public dataset containing visual-inertial and complete dynamical information in the real world for pose and external force evaluation. The dataset and related files are open-sourced.

[1]  Dongjae Lee,et al.  Model Predictive Control for an Aerial Manipulator Opening a Hinged Door , 2019, 2019 19th International Conference on Control, Automation and Systems (ICCAS).

[2]  Titus Cieslewski,et al.  Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing Dataset , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[3]  Giuseppe Loianno,et al.  IMU-Based Inertia Estimation for a Quadrotor Using Newton-Euler Dynamics , 2020, IEEE Robotics and Automation Letters.

[4]  Davide Scaramuzza,et al.  A Tutorial on Quantitative Trajectory Evaluation for Visual(-Inertial) Odometry , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[5]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[6]  Woosik Lee,et al.  OpenVINS: A Research Platform for Visual-Inertial Estimation , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[7]  W. Marsden I and J , 2012 .

[8]  Peter I. Corke,et al.  Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor , 2012, IEEE Robotics & Automation Magazine.

[9]  Shaojie Shen,et al.  VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator , 2017, IEEE Transactions on Robotics.

[10]  Claire J. Tomlin,et al.  Robust Trajectory Planning for a Multirotor against Disturbance based on Hamilton-Jacobi Reachability Analysis , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[11]  Anastasios I. Mourikis,et al.  High-precision, consistent EKF-based visual-inertial odometry , 2013, Int. J. Robotics Res..

[12]  Stephen J. Chapman,et al.  Electric Machinery Fundamentals , 1991 .

[13]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[14]  J. Gordon Leishman,et al.  Principles of Helicopter Aerodynamics , 2000 .

[15]  Fei Gao,et al.  VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation , 2021, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[16]  Roland Siegwart,et al.  The EuRoC micro aerial vehicle datasets , 2016, Int. J. Robotics Res..

[17]  Ziming Ding,et al.  External Forces Resilient Safe Motion Planning for Quadrotor , 2021, IEEE Robotics and Automation Letters.

[18]  Dohyun Jang,et al.  Real-Time Optimal Trajectory Generation and Control of a Multi-Rotor With a Suspended Load for Obstacle Avoidance , 2020, IEEE Robotics and Automation Letters.

[19]  Xiaoxia Zhou,et al.  CMPCC: Corridor-based Model Predictive Contouring Control for Aggressive Drone Flight , 2020, ISER.

[20]  Roland Siegwart,et al.  Unified temporal and spatial calibration for multi-sensor systems , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Charles Meunier [High precision]. , 2008, Perspective infirmiere : revue officielle de l'Ordre des infirmieres et infirmiers du Quebec.

[22]  Davide Scaramuzza,et al.  The Zurich urban micro aerial vehicle dataset , 2017, Int. J. Robotics Res..

[23]  Vijay Kumar,et al.  Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight , 2017, IEEE Robotics and Automation Letters.

[24]  Sertac Karaman,et al.  The Blackbird UAV dataset , 2020, Int. J. Robotics Res..

[25]  Davide Scaramuzza,et al.  SVO: Fast semi-direct monocular visual odometry , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[26]  Daniel Cremers,et al.  Direct Sparse Odometry , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Richard Elvira,et al.  ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM , 2021, IEEE Transactions on Robotics.

[28]  Hyungbo Shim,et al.  Robust Control of an Equipment-Added Multirotor Using Disturbance Observer , 2018, IEEE Transactions on Control Systems Technology.

[29]  Davide Scaramuzza,et al.  VIMO: Simultaneous Visual Inertial Model-Based Odometry and Force Estimation , 2019, IEEE Robotics and Automation Letters.

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.