An in situ gelling liquid crystalline system based on monoglycerides and polyethylenimine for local delivery of siRNAs.

[1]  A. Zimmer,et al.  Glycerol monooleate liquid crystalline phases used in drug delivery systems. , 2015, International journal of pharmaceutics.

[2]  E. Watanabe,et al.  Mucoadhesive system formed by liquid crystals for buccal administration of poly(hexamethylene biguanide) hydrochloride. , 2014, Journal of pharmaceutical sciences.

[3]  M. Iyomasa,et al.  Self-assembling gelling formulation based on a crystalline-phase liquid as a non-viral vector for siRNA delivery. , 2014, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[4]  Daniel G. Anderson,et al.  Non-viral vectors for gene-based therapy , 2014, Nature Reviews Genetics.

[5]  T. Hanley,et al.  Sensitivity of nanostructure in charged cubosomes to phase changes triggered by ionic species in solution. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[6]  I. Rupenthal,et al.  Injectable implants for the sustained release of protein and peptide drugs. , 2013, Drug discovery today.

[7]  L. N. Borgheti-Cardoso,et al.  Delivery Systems and Local Administration Routes for Therapeutic siRNA , 2013, Pharmaceutical Research.

[8]  I. El-Sherbiny,et al.  Formulation approaches to short interfering RNA and MicroRNA: challenges and implications. , 2012, Journal of pharmaceutical sciences.

[9]  M. Park,et al.  Injectable polyplex hydrogel for localized and long-term delivery of siRNA. , 2012, ACS nano.

[10]  M. Rappolt,et al.  Characterization of bupivacaine-loaded formulations based on liquid crystalline phases and microemulsions: the effect of lipid composition. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[11]  C. Drummond,et al.  Lyotropic liquid crystal engineering-ordered nanostructured small molecule amphiphile self-assembly materials by design. , 2012, Chemical Society reviews.

[12]  T. Hanley,et al.  Evaluating the link between self-assembled mesophase structure and drug release. , 2011, International journal of pharmaceutics.

[13]  J. Lieberman,et al.  Special delivery: targeted therapy with small RNAs , 2011, Gene Therapy.

[14]  Meng Zheng,et al.  Non-viral gene transfection in vitro using endosomal pH-sensitive reversibly hydrophobilized polyethylenimine. , 2011, Biomaterials.

[15]  R. Maurer,et al.  Effect of glycerol addition on the internal structure and thermal stability of hexosomes prepared from phytantriol , 2011 .

[16]  A. Urtti,et al.  In situ characterization of lipidic bupivacaine-loaded formulations , 2011 .

[17]  Jiasheng Tu,et al.  A novel tumor-targeted delivery system with hydrophobized hyaluronic acid-spermine conjugates (HHSCs) for efficient receptor-mediated siRNA delivery. , 2011, International journal of pharmaceutics.

[18]  A. Tedesco,et al.  Analysis of liquid crystalline nanoparticles by small angle X-ray diffraction: evaluation of drug and pharmaceutical additives influence on the internal structure. , 2011, Journal of pharmaceutical sciences.

[19]  A. Sood,et al.  Chitosan hydrogel for localized gene silencing , 2011, Cancer biology & therapy.

[20]  R. Mezzenga,et al.  Tuning in-meso-crystallized lysozyme polymorphism by lyotropic liquid crystal symmetry. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[21]  T. Kissel,et al.  Comparative in vivo study of poly(ethylene imine)/siRNA complexes for pulmonary delivery in mice. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[22]  Wolfgang Kreyling,et al.  Polyethylenimines for RNAi-mediated gene targeting in vivo and siRNA delivery to the lung. , 2011, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[23]  R. Mezzenga,et al.  pH-responsive lyotropic liquid crystals for controlled drug delivery. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[24]  C. Kulkarni,et al.  Monoolein: a magic lipid? , 2011, Physical chemistry chemical physics : PCCP.

[25]  M. Huang,et al.  Phytantriol-based inverted type bicontinuous cubic phase for vascular embolization and drug sustained release. , 2010, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[26]  M. Kreuter,et al.  Vascular infarction by subcutaneous application of tissue factor targeted to tumor vessels with NGR-peptides: activity and toxicity profile. , 2010, International journal of oncology.

[27]  T. Rades,et al.  Liquid crystalline systems of phytantriol and glyceryl monooleate containing a hydrophilic protein: Characterisation, swelling and release kinetics. , 2009, Journal of pharmaceutical sciences.

[28]  Eben Alsberg,et al.  Localized and sustained delivery of silencing RNA from macroscopic biopolymer hydrogels. , 2009, Journal of the American Chemical Society.

[29]  Ben J Boyd,et al.  Stimuli responsive liquid crystals provide 'on-demand' drug delivery in vitro and in vivo. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[30]  G. Robertson,et al.  Targeting V600EB-Raf and Akt3 using nanoliposomal-small interfering RNA inhibits cutaneous melanocytic lesion development. , 2008, Cancer research.

[31]  N. Garti,et al.  Solubilization of nutraceuticals into reverse hexagonal mesophases. , 2008, The journal of physical chemistry. B.

[32]  D. Putnam,et al.  Polymer systems for gene delivery - Past, present, and future , 2007 .

[33]  Shuguang Zhang,et al.  Tuning Curvature and Stability of Monoolein Bilayers by Designer Lipid-Like Peptide Surfactants , 2007, PloS one.

[34]  E. Wachtel,et al.  An HII liquid crystal-based delivery system for cyclosporin A: physical characterization. , 2007, Journal of colloid and interface science.

[35]  E. Wachtel,et al.  Hexosome and hexagonal phases mediated by hydration and polymeric stabilizer. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[36]  Nissim Garti,et al.  Transitions induced by solubilized fat into reverse hexagonal mesophases. , 2005, Colloids and surfaces. B, Biointerfaces.

[37]  R. Mezzenga,et al.  Polysaccharide-induced order-to-order transitions in lyotropic liquid crystals. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[38]  M. Bentley,et al.  In vitro drug release mechanism and drug loading studies of cubic phase gels. , 2005, International journal of pharmaceutics.

[39]  J. M. Marchetti,et al.  Sustained release of lidocaine from Poloxamer 407 gels. , 2005, International journal of pharmaceutics.

[40]  T. Kissel,et al.  In situ forming parenteral drug delivery systems: an overview. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[41]  H. Watzke,et al.  Reversible phase transitions in emulsified nanostructured lipid systems. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[42]  A. Paradkar,et al.  Effect of drug solubility and different excipients on floating behaviour and release from glyceryl monooleate matrices. , 2004, International journal of pharmaceutics.

[43]  Pradeep Tyagi,et al.  Controlled Gene Delivery System Based on Thermosensitive Biodegradable Hydrogel , 2003, Pharmaceutical Research.

[44]  Hesson Chung,et al.  Component Effects on the Phase Behavior of Monoglyceride–Water Mixtures Studied by FT‐IR and X‐Ray Diffraction , 2003 .

[45]  G. Lindblom,et al.  Thermal behaviour of cubic phases rich in 1-monooleoyl-rac-glycerol in the ternary system. 1-monooleoyl-rac-glycerol/n-octyl-beta-D-glucoside/water. , 2002, European journal of biochemistry.

[46]  A Hatefi,et al.  Biodegradable injectable in situ forming drug delivery systems. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[47]  D M Chilukuri,et al.  Cubic phase gels as drug delivery systems. , 2001, Advanced drug delivery reviews.

[48]  J. Rathman,et al.  Phase behavior of a monoacylglycerol: (myverol 18-99K)/water system. , 2000, Chemistry and physics of lipids.

[49]  I. Kellaway,et al.  Buccal permeation of [D-Ala(2), D-Leu(5)]enkephalin from liquid crystalline phases of glyceryl monooleate. , 2000, International journal of pharmaceutics.

[50]  M. Caffrey,et al.  The phase diagram of the monoolein/water system: metastability and equilibrium aspects. , 2000, Biomaterials.

[51]  S. Li,et al.  Effects of electrostatic interaction on the phase stability and structures of cubic phases of monoolein/oleic acid mixture membranes. , 1999, Biochimica et biophysica acta.

[52]  R. Bodmeier,et al.  Low viscosity monoglyceride-based drug delivery systems transforming into a highly viscous cubic phase , 1998 .

[53]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[54]  R. Bodmeier,et al.  Effect of dissolution media and additives on the drug release from cubic phase delivery systems , 1997 .

[55]  R. Bodmeier,et al.  Swelling of and drug release from monoglyceride-based drug delivery systems. , 1997, Journal of pharmaceutical sciences.

[56]  R. Bodmeier,et al.  Binding of drugs to monoglyceride-based drug delivery systems , 1997 .

[57]  D. Attwood,et al.  The in Vitro Release of Some Antimuscarinic Drugs from Monoolein/ Water Lyotropic Liquid Crystalline Gels , 1996, Pharmaceutical Research.

[58]  Tomas Landh Phase Behavior in the System Pine Needle Oil Monoglycerides-Poloxamer 407-Water at 20.degree. , 1994 .

[59]  H. Schott,et al.  Kinetics of swelling of polymers and their gels. , 1992, Journal of pharmaceutical sciences.

[60]  S. Engström,et al.  Phase behaviour of the lidocaine-monoolein-water system , 1992 .

[61]  K. Larsson Cubic lipid-water phases: structures and biomembrane aspects , 1989 .

[62]  G. Lindblom,et al.  Cubic phases and isotropic structures formed by membrane lipids — possible biological relevance , 1989 .

[63]  E. Alsberg,et al.  Functionalized, biodegradable hydrogels for control over sustained and localized siRNA delivery to incorporated and surrounding cells. , 2013, Acta biomaterialia.

[64]  M. Rappolt,et al.  In situ forming drug delivery systems based on lyotropic liquid crystalline phases: structural characterization and release properties , 2013 .

[65]  M. Monduzzi,et al.  Addition of hydrophilic and lipophilic compounds of biological relevance to the monoolein/water system. I. Phase behavior. , 2001, Chemistry and physics of lipids.

[66]  B. Ninham,et al.  Micelles, vesicles and microemulsions , 1981 .