Recent Trends in Photomultipliers for Nuclear Physics

Publisher Summary Photomultipliers (PMTs) have been effectively used for more than 40 years in nuclear physics. The reason the photomultipliers are not superseded by the solid-state detector can be attributed to three main characteristics— namely, large sensitive area, good timing characteristics, and high gain combined with low noise factor in the multiplier. The second and third characteristics signify that photomultipliers have an exceptionally high-gain bandwidth product. This chapter aims to describe the present-day state of the art of photomultiplier technology with emphasis on photocathodes, secondary emission, and new structures. The chapter specifically considers the use of photomultipliers in nuclear physics, including mainly the high-energy physics and the medical markets. In nuclear physics, the use of PMTs is exclusively restricted to applications where ionizing radiations produce light pulses during their partial or total absorption in an optically transparent medium called a scintillator. Most inorganic scintillators have higher stopping power for gamma rays than has silicon. This results in bringing cost advantages to photomultiplier.

[1]  P. B. Lyons,et al.  Ultra-fast detectors for laser fusion diagnostics , 1980 .

[2]  M. Audier,et al.  Multiplicateur à galette de microcanaux : amélioration des performances de gain et de dynamique de détection , 1978 .

[3]  A. Ronzhin,et al.  Scintillation hodoscopes with hodoscope photomultipliers , 1980 .

[4]  B. F. Williams,et al.  NEW HIGH-GAIN DYNODE FOR PHOTOMULTIPLIERS. , 1968 .

[5]  C. B. Johnson Intensified Self-Scanned Array Technology Review , 1982, IEEE Transactions on Nuclear Science.

[6]  Martin Rome,et al.  The Quadrant Multiplier Phototube, a New Star-Tracker Sensor , 1964 .

[7]  R. Miller,et al.  Secondary-emission amplification at microwave frequencies , 1965 .

[8]  J. Boutot,et al.  Photomultiplier Control by a Clamping Cross-Bar Grid , 1972 .

[9]  O. C. Wilson,et al.  The activity cycles of stars , 1981 .

[10]  K. Pretzl,et al.  A novel light-collection system for segmented scintillation-counter calorimeters , 1978 .

[11]  M. L. Meade REVIEW ARTICLE: Instrumentation aspects of photon counting applied to photometry , 1981 .

[12]  J. Howorth,et al.  Transmission silicon photoemitters and electron multipliers , 1976 .

[13]  S. Prydz Proposal for a position sensitive photomultiplier detector , 1973 .

[14]  Marek Moszynski,et al.  STATUS OF TIMING WITH PLASTIC SCINTILLATION DETECTORS , 1979 .

[15]  P. Chevalier Photomultiplicateur a haute résolution utilisant un multiplicateur semiconducteur , 1967 .

[16]  I. Mcwhirter,et al.  CORRIGENDUM: Miniature imaging photon detectors II. Devices with transparent photocathodes , 1981 .

[17]  Philo Taylor Farnsworth,et al.  Television by electron image scanning , 1934 .

[18]  G. Pietri Contribution of the Channel Electron Multiplier to the Race of Vacuum Tubes Towards Picosecond Resolution Time , 1977, IEEE Transactions on Nuclear Science.

[19]  J. Gethyn Timothy,et al.  Multi-Anode Microchannel Arrays , 1980, IEEE Transactions on Nuclear Science.

[20]  J. P. Boutot,et al.  A Microchannel Plate with Curved Channels: An Improvement in Gain, Relative Variance and Ion Noise for Channel Plate Tubes , 1976 .

[21]  J. Miehé,et al.  Wavelength dependence of the time resolution of high-speed photomultipliers used in single-photon timing experiments , 1976 .

[22]  R. Kalibjian A Phototube Using a Semiconductor Diode as the Multiplier Element , 1966 .

[23]  R. Majka,et al.  Development Status of Microchannel Plate Photomultipliers , 1977, IEEE Transactions on Nuclear Science.

[24]  A. Broadfoot,et al.  Microchannel plate life tests. , 1977, Applied optics.

[25]  M E Raichle,et al.  Positron-emission tomography. , 1980, Scientific American.

[26]  G. Muehllehner,et al.  The Quadrant Photomultiplier , 1979, IEEE Transactions on Nuclear Science.

[27]  B. Kazan,et al.  Advances in image pickup and display , 1974 .

[28]  G. Beck Operation of a 1P28 photomultiplier with subnanosecond response time , 1976 .

[29]  G. A. Morton,et al.  PULSE HEIGHT RESOLUTION OF HIGH GAIN FIRST DYNODE PHOTOMULTIPLIERS , 1968 .

[30]  R. Apsimon,et al.  A new photomultiplier tube utilising channel plate electron multipliers as the gain producing elements , 1976 .

[31]  F. Lynch Basic Limitation of Scintillation Counters in Time Measurements , 1975, IEEE Transactions on Nuclear Science.

[32]  A. Sommer Stability of photocathodes. , 1973, Applied optics.

[33]  W. Colson,et al.  High‐gain imaging electron multiplier , 1973 .

[34]  Victor J. Sank,et al.  POTENTIAL ADVANTAGES OF A CESIUM FLUORIDE SCINTILLATOR FOR A TIME‐OF‐FLIGHT POSITRON CAMERA , 1980, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[35]  J. B. Birks,et al.  The Theory and Practice of Scintillation Counting , 1965 .

[36]  Sherman K. Poultney,et al.  Single photon detection and timing - Experiments and techniques. , 1972 .

[37]  P. Wahl,et al.  The wavelength dependence of the response of a pulse fluorometer using the single photoelectron counting method , 1974 .

[38]  W. Parkes,et al.  The use of cascaded channel plates as high gain electron multipliers , 1971 .

[39]  G. A. Morton,et al.  The Secondary Emission Multiplier-A New Electronic Device , 1936, Proceedings of the Institute of Radio Engineers.

[40]  C. Mcilwain,et al.  A Digital Multichannel Photometer , 1971 .

[41]  M. Yamashita Time dependence of rate‐dependent photomultiplier gain and its implications , 1980 .

[42]  B. Leskovar,et al.  Time Resolution Performance Studies of Contemporary High Speed Photomultipliers , 1978, IEEE Transactions on Nuclear Science.

[43]  Pierre Lecomte,et al.  Performance Studies of Prototype Microchannel Plate Photomultipliers , 1976, IEEE Transactions on Nuclear Science.

[44]  M. Bourdinaud,et al.  Low Cost Scintillators and Wave Length Shifters , 1981 .

[45]  H. Krall,et al.  Recent Work on Fast Photomultipliers Utilizing GaP(Cs) Dynodes , 1972 .

[46]  A. Savoy-Navarro,et al.  A detector for high-energy neutrino interactions , 1978 .

[47]  D. Stromswold Comparison of Sodium Iodide, Cesium Iodide, and Bismuth Germanate Scintillation Detectors for Borehole Gamma-Ray Logging , 1981, IEEE Transactions on Nuclear Science.

[48]  J. Miehé,et al.  Influence of the time-of-flight spread of photoelectrons on the measurements of the shape of subnanosecond light pulses in 8850 RCA photomultipliers , 1974 .

[49]  H. Pollehn,et al.  Low Noise Proximity Focused Image Intensifiers , 1976 .

[50]  Anneke Levelt Sengers,et al.  Critical‐point universality and fluids , 1977 .

[51]  M. Jonas,et al.  Dependence of Signal-to-Noise Ratio on Operating Voltage in Photomultipliers. , 1971, Applied optics.

[52]  Dominic J. Ruggieri,et al.  Microchannel Plate Imaging Detectors , 1972 .

[53]  M. Moszynski,et al.  Influence of incident light wavelength on time jitter of fast photomultipliers , 1977 .

[54]  I. Almodovar,et al.  Fatigue in photomultiplier tubes-an effect of the Malter type , 1963 .

[55]  J. Dupuis,et al.  Reverse Epitaxial Silicon Diode for Hybrid Photomultiplier Tube , 1968 .

[56]  S. Mende,et al.  Characteristics of a Microchannel Plate Intensifier , 1982, IEEE Transactions on Nuclear Science.

[57]  E. Eberhardt,et al.  Proximity Focused Microchannel Plate Photomultiplier Tubes , 1981, IEEE Transactions on Nuclear Science.

[58]  S. Weinberg The Decay of the Proton , 1981 .

[59]  J. Los,et al.  A position dependent particle counter using microchannel plates , 1976 .

[60]  P. B. Coates Fatigue and its correction in photon counting experiments , 1975 .

[61]  J. Wiza,et al.  High Gain Microchannel Plates , 1978, IEEE Transactions on Nuclear Science.

[62]  Yoshiji Suzuki,et al.  A 400 Anode Chevron Microchannel Plate PMT for High Energy Application , 1979, IEEE Transactions on Nuclear Science.

[63]  D. J. Bates,et al.  Electron bombarded semiconductor devices , 1974 .

[64]  P. B. Coates Photomultiplier collection efficiencies and nonpoissonian pulse height distributions , 1973 .

[65]  P. A. Zagarino,et al.  Characterization of Microchannel Plate Photomultipliers for Plasma Diagnostics , 1979, IEEE Transactions on Nuclear Science.

[66]  M. Moszynski,et al.  Timing properties of scintillation counters , 1970 .

[67]  C. Hendee,et al.  Continuous Channel Electron Multiplier Operated in the Pulse Saturated Mode , 1966 .

[68]  B. F. Williams Negative Electron Affinity Materials in Photomultipliers , 1972 .

[69]  P. J. Carlson,et al.  A silica aerogel cerenkov counter with diffusing walls , 1979 .

[70]  P. Řehák,et al.  Studies of High-Gain Micro-Channel Plate Photomultipliers , 1980, IEEE Transactions on Nuclear Science.

[71]  F. D. Brooks Development of organic scintillators , 1979 .

[72]  R. Bell,et al.  Negative Electron Affinity Devices , 1985 .

[73]  I. B. Berlman Handbook of flourescence spectra of aromatic molecules , 1971 .

[74]  C. E. Catchpole,et al.  THE MULTIANODE PHOTOMULTIPLIER , 1972 .

[75]  R. Heath,et al.  Inorganic scintillators: A review of techniques and applications , 1979 .

[76]  P. Chevalier,et al.  A PM of New Design for High Speed Physics , 1970 .

[77]  L. G. Smith Magnetic Electron Multipliers for Detection of Positive Ions , 1951 .

[78]  Ronald H. Huesman,et al.  Imaging Properties of a Positron Tomograph with 280 Bgo Crystals , 1981, IEEE Transactions on Nuclear Science.

[79]  R. S. Lawrence,et al.  Count Rate Performance of a Microchannel Plate Photomultiplier , 1982, IEEE Transactions on Nuclear Science.

[80]  B. Leskovar,et al.  A Measuring System for Studying the Time-Resolution Capabilities of Fast Photomultipliers , 1973 .

[81]  S. Lutz,et al.  Development of Long-Wavelength-Emitting Scintillators with Improved Decay Time Characteristics , 1978, IEEE Transactions on Nuclear Science.

[82]  S. Dhawan Introduction to Microchannel Plate Photomultipliers , 1981, IEEE Transactions on Nuclear Science.

[83]  D. Sillou,et al.  New type of position sensitive photomultiplier , 1981 .

[84]  B. Leskovar,et al.  Performance Studies of High Gain Photomultiplier Having Z-Configuration of Microchannel Plates , 1981, IEEE Transactions on Nuclear Science.

[86]  H. Krall,et al.  Recent Developments in GaP(Cs)-Dynode Photomultipliers , 1970 .

[87]  R. Mosetti,et al.  Wavelength dependence of timing properties of the XP 2020 photomultiplier , 1978 .

[88]  M. Hagino,et al.  Caesium Activated CsI Transmission-type Secondary Emission Dynode , 1972 .

[89]  R. Meunier,et al.  Evaluation of a microchannel photomultiplier and small-size phototubes for cerenkov counters , 1978, IEEE Transactions on Nuclear Science.

[90]  F. Martin,et al.  Statistics of Electron Multiplication , 1961 .

[91]  M. Yamashita Mechanism of the hysteresis effect in rate-dependent photomultiplier gain variations. , 1978, The Review of scientific instruments.

[92]  J. Miehé,et al.  Impulse response of curved microchannel plate photomultipliers , 1977 .

[93]  J. A. Lodge,et al.  A cross-field photomultiplier with sub-nanosecond risetime suitable for nuclear studies , 1968 .

[94]  A. Fenster,et al.  Linearity and Fatigue in Photomultipliers , 1973 .

[95]  Nizar A. Mullani,et al.  Cesium Fluoride: A New Detector for Positron Emission Tomography , 1980, IEEE Transactions on Nuclear Science.

[96]  Leon Kaufman,et al.  Semiconductor Gamma-Cameras in Nuclear Medicine , 1980, IEEE Transactions on Nuclear Science.

[97]  M. Moszynski,et al.  PROPERTIES OF CsF, A FAST INORGANIC SCINTILLATOR IN ENERGY AND TIME SPECTROSCOPY , 1981 .

[98]  J. Wiza Microchannel plate detectors , 1979 .

[99]  J. Miehé,et al.  Temporal response and real time measurements with a 5 GHz photocell-oscilloscope system at low light levels , 1975 .

[100]  C. C. Lo,et al.  Single photoelectron time spread measurement of fast photomultipliers , 1975 .

[101]  P. Lyons Technology Update on Fast Plastic Scintillators for Medical Applications , 1977, IEEE Transactions on Nuclear Science.

[102]  Nizar A. Mullani,et al.  System Design of Fast Pet Scanners Utilizing Time-of-Flight , 1981, IEEE Transactions on Nuclear Science.

[103]  I. P. Csorba Recent advancements in the field of image intensification: the generation 3 wafer tube. , 1979, Applied optics.

[104]  F. Barre Influence of Transit Time Differences on Photomultiplier Time Resolution , 1972 .

[105]  Stephen S. Murray,et al.  The High Speed Photicon , 1979, IEEE Transactions on Nuclear Science.

[106]  Emilio Gatti,et al.  Review of theories and experiments of resolving time with scintillation counters , 1966 .

[107]  B. Leskovar,et al.  Performance Studies of the New Generation Amperex Xp2020 Photomultiplier , 1981, IEEE Transactions on Nuclear Science.

[108]  B. Manley,et al.  The Mechanism of Channel Electron Multiplication , 1966 .

[109]  J. Boutot,et al.  Ultra high speed microchannel photomultiplier , 1970 .

[110]  J. Demuynck,et al.  Application of a Microchannel Plate PhotoMultiplier in Subnanosecond Lifetime Measurements , 1978, IEEE Transactions on Nuclear Science.

[111]  J. Howie,et al.  A spot-focusing Čerenkov counter for the detection of multiparticle events at high energies , 1973 .

[112]  R. Meunier,et al.  A spot-focusing Čerenkov detector , 1979 .

[113]  L. Aukerman,et al.  Photodetectors for the 0.1 to 1.0 μm Spectral Region , 1973 .

[114]  O. Youngbluth Fatigue Effects on the Area Sensitivity, Dynode Gain, and Anode Output for Several End-on Photomultipliers. , 1970, Applied Optics.

[115]  J. Panitz,et al.  Areal detection efficiency of channel electron multiplier arrays , 1976 .

[116]  A. W. Woodhead,et al.  The channel electron multiplier and its use in image intensifiers , 1977 .