Complete Genome Sequence of the Cystic Fibrosis Pathogen Achromobacter xylosoxidans NH44784-1996 Complies with Important Pathogenic Phenotypes
暂无分享,去创建一个
S. Sørensen | M. Hansen | Peter Kerpedjiev | M. Kühl | N. Høiby | M. Givskov | L. Riber | M. Burmølle | T. Bjarnsholt | K. Qvortrup | C. Moser | T. Jakobsen | Morten Alhede | O. Ciofu | S. Eickhardt | M. Kolpen | L. Hansen | April Cockburn | W. Ridderberg | C. Rønne Hansen | M. Hansen | P. Ø. Jensen | Mette Burmølle
[1] P. Vandamme,et al. A Multilocus Sequence Typing Scheme Implies Population Structure and Reveals Several Putative Novel Achromobacter Species , 2012, Journal of Clinical Microbiology.
[2] Mikala Wang,et al. Multilocus Sequence Analysis of Isolates of Achromobacter from Patients with Cystic Fibrosis Reveals Infecting Species Other than Achromobacter xylosoxidans , 2012, Journal of Clinical Microbiology.
[3] S. Molin,et al. Phenotypes of Non-Attached Pseudomonas aeruginosa Aggregates Resemble Surface Attached Biofilm , 2011, PloS one.
[4] P. Nielsen,et al. True Microbiota Involved in Chronic Lung Infection of Cystic Fibrosis Patients Found by Culturing and 16S rRNA Gene Analysis , 2011, Journal of Clinical Microbiology.
[5] M. Nei,et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.
[6] C. Llanes,et al. First Description of an RND-Type Multidrug Efflux Pump in Achromobacter xylosoxidans, AxyABM , 2011, Antimicrobial Agents and Chemotherapy.
[7] J. Turton,et al. Identification of Achromobacter xylosoxidans by detection of the bla(OXA-114-like) gene intrinsic in this species. , 2011, Diagnostic microbiology and infectious disease.
[8] D. Jahn,et al. Anaerobic physiology of Pseudomonas aeruginosa in the cystic fibrosis lung. , 2010, International journal of medical microbiology : IJMM.
[9] J. Pačes,et al. Complete Genome Sequence of the Haloaromatic Acid-Degrading Bacterium Achromobacter xylosoxidans A8 , 2010, Journal of bacteriology.
[10] S. Aoki,et al. Bacterial contact-dependent delivery systems. , 2010, Annual review of genetics.
[11] Thomas Bjarnsholt,et al. Biofilms in chronic infections - a matter of opportunity - monospecies biofilms in multispecies infections. , 2010, FEMS immunology and medical microbiology.
[12] M. Givskov,et al. In vitro screens for quorum sensing inhibitors and in vivo confirmation of their effect , 2010, Nature Protocols.
[13] M. Parsek,et al. Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. , 2009, Microbiology.
[14] A. Kharazmi,et al. Polymorphonuclear leucocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis , 2009, Thorax.
[15] G. Pier,et al. Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes , 2009, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.
[16] N. Høiby,et al. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients , 2009, Pediatric pulmonology.
[17] Eduardo P C Rocha,et al. The Genome of Burkholderia cenocepacia J2315, an Epidemic Pathogen of Cystic Fibrosis Patients , 2008, Journal of bacteriology.
[18] M. Zucca,et al. Achromobacter xylosoxidans respiratory tract infections in cystic fibrosis patients , 2008, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.
[19] M. Wolfgang,et al. Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. , 2008, American journal of respiratory and critical care medicine.
[20] Georgios S. Vernikos,et al. The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants , 2008, Genome Biology.
[21] P. Nordmann,et al. Characterization of a Naturally Occurring Class D β-Lactamase from Achromobacter xylosoxidans , 2008, Antimicrobial Agents and Chemotherapy.
[22] Rick L. Stevens,et al. The RAST Server: Rapid Annotations using Subsystems Technology , 2008, BMC Genomics.
[23] Andrew T. Revel,et al. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin , 2007, Proceedings of the National Academy of Sciences.
[24] P. Williams,et al. Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. , 2007, Microbiology.
[25] N. Høiby. Pseudomonas Aeruginosa Infection In Cystic Fibrosis , 2007 .
[26] N. Høiby,et al. Chronic infection with Achromobacter xylosoxidans in cystic fibrosis patients; a retrospective case control study. , 2006, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.
[27] A. Péchinot,et al. VEB-1 in Achromobacter xylosoxidans from Cystic Fibrosis Patient, France , 2006, Emerging infectious diseases.
[28] S. Pournaras,et al. VIM-2 metallo-β-lactamase in Achromobacter xylosoxidans in Europe , 2005, European Journal of Clinical Microbiology and Infectious Diseases.
[29] N. Cianciotto. Type II secretion: a protein secretion system for all seasons. , 2005, Trends in microbiology.
[30] Kyudong Han,et al. Imipenem-resistant Achromobacter xylosoxidans carrying blaVIM-2-containing class 1 integron. , 2005, Diagnostic microbiology and infectious disease.
[31] Naryttza N. Diaz,et al. The Subsystems Approach to Genome Annotation and its Use in the Project to Annotate 1000 Genomes , 2005, Nucleic acids research.
[32] D. Thanassi,et al. Mechanisms of Protein Export across the Bacterial Outer Membrane , 2005, Journal of bacteriology.
[33] K. Poole. Efflux-mediated antimicrobial resistance. , 2005, The Journal of antimicrobial chemotherapy.
[34] M. Vaneechoutte,et al. Shared Genotypes of Achromobacter xylosoxidans Strains Isolated from Patients at a Cystic Fibrosis Rehabilitation Center , 2005, Journal of Clinical Microbiology.
[35] David S. Wishart,et al. Circular genome visualization and exploration using CGView , 2005, Bioinform..
[36] S. Molin,et al. Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. , 2005, Microbiology.
[37] K. Poole. Aminoglycoside Resistance in Pseudomonas aeruginosa , 2005, Antimicrobial Agents and Chemotherapy.
[38] K. Rolston,et al. Bacteremia caused by Achromobacter and Alcaligenes species in 46 patients with cancer (1989–2003) , 2004, Cancer.
[39] J. Preston,et al. The pgaABCD Locus of Escherichia coli Promotes the Synthesis of a Polysaccharide Adhesin Required for Biofilm Formation , 2004, Journal of bacteriology.
[40] A. Maniatis,et al. Persistent Colonization of Nine Cystic Fibrosis Patients with an Achromobacter (Alcaligenes) xylosoxidans Clone , 2004, European Journal of Clinical Microbiology and Infectious Diseases.
[41] P. Peña,et al. Achromobacter xylosoxidans Bacteremia: A 10-Year Analysis of 54 Cases , 2003, European Journal of Clinical Microbiology and Infectious Diseases.
[42] George M. Hilliard,et al. Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. , 2002, Developmental cell.
[43] D. Peckham,et al. Alcaligenes infection in cystic fibrosis , 2002, Pediatric pulmonology.
[44] Qijing Zhang,et al. CmeABC Functions as a Multidrug Efflux System in Campylobacter jejuni , 2002, Antimicrobial Agents and Chemotherapy.
[45] S. Iyobe,et al. Detection of a Variant Metallo-β-Lactamase, IMP-10, from Two Unrelated Strains of Pseudomonas aeruginosa and an Alcaligenes xylosoxidans Strain , 2002, Antimicrobial Agents and Chemotherapy.
[46] T. Coenye,et al. Ribosomal DNA-Directed PCR for Identification of Achromobacter (Alcaligenes) xylosoxidans Recovered from Sputum Samples from Cystic Fibrosis Patients , 2002, Journal of Clinical Microbiology.
[47] J. Costerton,et al. Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms , 2002, Clinical Microbiology Reviews.
[48] Richard C Boucher,et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. , 2002, The Journal of clinical investigation.
[49] J. Costerton,et al. Antibiotic resistance of bacteria in biofilms , 2001, The Lancet.
[50] M. Kanehisa,et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus , 2001, The Lancet.
[51] M. Peel,et al. Recurrent Achromobacter piechaudiiBacteremia in a Patient with Hematological Malignancy , 2001, Journal of Clinical Microbiology.
[52] J. Costerton. Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. , 2001, Trends in microbiology.
[53] S. Lory,et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.
[54] N. Høiby,et al. Pseudomonas aeruginosa cross‐infection among patients with cystic fibrosis during a winter camp , 2000, Pediatric pulmonology.
[55] H. Ceri,et al. The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms , 1999, Journal of Clinical Microbiology.
[56] J. Galán,et al. Type III Secretion Machines: Bacterial Devices for Protein Delivery into Host Cells , 1999 .
[57] J. Costerton,et al. Bacterial biofilms: a common cause of persistent infections. , 1999, Science.
[58] J. Costerton,et al. Introduction to biofilm. , 1999, International journal of antimicrobial agents.
[59] R. Kolter,et al. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development , 1998, Molecular microbiology.
[60] R. Kolter,et al. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili , 1998, Molecular microbiology.
[61] D. Goldmann,et al. The ica Locus of Staphylococcus epidermidis Encodes Production of the Capsular Polysaccharide/Adhesin , 1998, Infection and Immunity.
[62] Roberto Kolter,et al. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis , 1998, Molecular microbiology.
[63] H. Kentrup,et al. Persistent airway colonization withAlcaligenes xylosoxidans in two brothers with cystic fibrosis , 1998, European Journal of Clinical Microbiology and Infectious Diseases.
[64] P. Nordmann,et al. OXA-18, a class D clavulanic acid-inhibited extended-spectrum beta-lactamase from Pseudomonas aeruginosa , 1997, Antimicrobial agents and chemotherapy.
[65] F. E. Dodd,et al. Structures of a blue-copper nitrite reductase and its substrate-bound complex. , 1997, Acta crystallographica. Section D, Biological crystallography.
[66] G. Tournier,et al. Molecular epidemiology ofBurkholderia cepacia, Stenotrophomonas maltophilia, andAlcaligenes xylosoxidans in a cystic fibrosis center , 1996, European Journal of Clinical Microbiology and Infectious Diseases.
[67] W. Hillen,et al. Tetracyclines: antibiotic action, uptake, and resistance mechanisms , 1996, Archives of Microbiology.
[68] D. Mack,et al. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis , 1996, Journal of bacteriology.
[69] D H Persing,et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing , 1995, Journal of clinical microbiology.
[70] R. Fleischmann,et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.
[71] K. Qvortrup,et al. Surface Morphology of the Endolymphatic Duct in the Rat a Scanning Electron Microscopy Study , 1995, The Annals of otology, rhinology, and laryngology.
[72] Y. Liu,et al. Characterization of a novel regulatory gene aepA that controls extracellular enzyme production in the phytopathogenic bacterium Erwinia carotovora subsp. carotovora. , 1993, Molecular plant-microbe interactions : MPMI.
[73] J. Lucet,et al. A beta-lactamase-overproducing strain of Alcaligenes denitrificans subsp. xylosoxydans isolated from a case of meningitis. , 1992, The Journal of antimicrobial chemotherapy.
[74] J. Godden,et al. The 2.3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. , 1991, Science.
[75] V. Rosdahl,et al. Genome fingerprinting as a typing method used on polyagglutinable Pseudomonas aeruginosa isolates from cystic fibrosis patients , 1991, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.
[76] P. Courvalin,et al. Nucleotide sequence of Acinetobacter baumannii aphA‐6 gene: evolutionary and functional implications of sequence homologies with nucleotide‐binding proteins, kinases and other aminoglycoside‐modifying enzymes , 1988, Molecular microbiology.
[77] M. Peel,et al. Alcaligenes piechaudii from chronic ear discharge , 1988, Journal of clinical microbiology.
[78] J. Freney,et al. In vitro susceptibility of Alcaligenes denitrificans subsp. xylosoxidans to 24 antimicrobial agents , 1988, Antimicrobial Agents and Chemotherapy.
[79] C. Viscoli,et al. Emerging microorganisms in cystic fibrosis. , 1987, Chemioterapia : international journal of the Mediterranean Society of Chemotherapy.
[80] M. Thomassen,et al. Occurrence and antimicrobial susceptibility of gram-negative nonfermentative bacilli in cystic fibrosis patients. , 1985, Diagnostic microbiology and infectious disease.
[81] J. Williams,et al. Mechanisms of beta-lactam resistance in British isolates of Pseudomonas aeruginosa. , 1984, Journal of medical microbiology.
[82] C. Cobbs,et al. Clinical and laboratory characteristics of Achromobacter xylosoxidans infection , 1980, Journal of clinical microbiology.
[83] F. Pien,et al. Achromobacter xylosoxidans isolates in Hawaii , 1978, Journal of clinical microbiology.
[84] L. Jacobsen,et al. Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance of Pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. , 1977, Scandinavian journal of respiratory diseases.
[85] S. Sørensen,et al. An invisible workforce: biofilms in the soil , 2012 .
[86] G. Lear,et al. Microbial biofilms : current research and applications , 2012 .
[87] N. Høiby,et al. Inflammation in Achromobacter xylosoxidans infected cystic fibrosis patients. , 2010, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.
[88] M. Almuzara,et al. In vitro susceptibility of Achromobacter spp. isolates: comparison of disk diffusion, Etest and agar dilution methods. , 2010, International journal of antimicrobial agents.
[89] M. Vaneechoutte,et al. Achromobacter xylosoxidans in cystic fibrosis: prevalence and clinical relevance. , 2007, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.
[90] A. Stolz,et al. Achromobacter, Alcaligenes and Related Genera , 2006 .
[91] S. Pournaras,et al. VIM-2 metallo-beta-lactamase in Achromobacter xylosoxidans in Europe. , 2005, European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology.
[92] U. Meier,et al. The reduction of nitrous oxide to dinitrogen by Escherichia coli , 2004, Archives of Microbiology.
[93] G. O’Toole,et al. Mechanisms of biofilm resistance to antimicrobial agents. , 2001, Trends in microbiology.
[94] L. Saiman,et al. Identification and Antimicrobial Susceptibility of Alcaligenes xylosoxidans Isolated from Patients with Cystic Fibrosis , 2001 .
[95] S. Lory,et al. Complete genome sequence of Pseudomonas aeruginosa PAO 1 , an opportunistic pathogen , 2000 .
[96] B. Christensen,et al. Molecular tools for study of biofilm physiology. , 1999, Methods in enzymology.
[97] B. Bachmann,et al. Derivations and genotypes of some mutant derivatives of Escherichia coli K12 , 1987 .
[98] J. Costerton,et al. Bacterial biofilms in nature and disease. , 1987, Annual review of microbiology.
[99] E. Yabuuchi. [Identification of Pseudomonas and related organisms]. , 1973, Rinsho byori. The Japanese journal of clinical pathology.