Complete Genome Sequence of the Cystic Fibrosis Pathogen Achromobacter xylosoxidans NH44784-1996 Complies with Important Pathogenic Phenotypes

Achromobacter xylosoxidans is an environmental opportunistic pathogen, which infects an increasing number of immunocompromised patients. In this study we combined genomic analysis of a clinical isolated A. xylosoxidans strain with phenotypic investigations of its important pathogenic features. We present a complete assembly of the genome of A. xylosoxidans NH44784-1996, an isolate from a cystic fibrosis patient obtained in 1996. The genome of A. xylosoxidans NH44784-1996 contains approximately 7 million base pairs with 6390 potential protein-coding sequences. We identified several features that render it an opportunistic human pathogen, We found genes involved in anaerobic growth and the pgaABCD operon encoding the biofilm adhesin poly-β-1,6-N-acetyl-D-glucosamin. Furthermore, the genome contains a range of antibiotic resistance genes coding efflux pump systems and antibiotic modifying enzymes. In vitro studies of A. xylosoxidans NH44784-1996 confirmed the genomic evidence for its ability to form biofilms, anaerobic growth via denitrification, and resistance to a broad range of antibiotics. Our investigation enables further studies of the functionality of important identified genes contributing to the pathogenicity of A. xylosoxidans and thereby improves our understanding and ability to treat this emerging pathogen.

[1]  P. Vandamme,et al.  A Multilocus Sequence Typing Scheme Implies Population Structure and Reveals Several Putative Novel Achromobacter Species , 2012, Journal of Clinical Microbiology.

[2]  Mikala Wang,et al.  Multilocus Sequence Analysis of Isolates of Achromobacter from Patients with Cystic Fibrosis Reveals Infecting Species Other than Achromobacter xylosoxidans , 2012, Journal of Clinical Microbiology.

[3]  S. Molin,et al.  Phenotypes of Non-Attached Pseudomonas aeruginosa Aggregates Resemble Surface Attached Biofilm , 2011, PloS one.

[4]  P. Nielsen,et al.  True Microbiota Involved in Chronic Lung Infection of Cystic Fibrosis Patients Found by Culturing and 16S rRNA Gene Analysis , 2011, Journal of Clinical Microbiology.

[5]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[6]  C. Llanes,et al.  First Description of an RND-Type Multidrug Efflux Pump in Achromobacter xylosoxidans, AxyABM , 2011, Antimicrobial Agents and Chemotherapy.

[7]  J. Turton,et al.  Identification of Achromobacter xylosoxidans by detection of the bla(OXA-114-like) gene intrinsic in this species. , 2011, Diagnostic microbiology and infectious disease.

[8]  D. Jahn,et al.  Anaerobic physiology of Pseudomonas aeruginosa in the cystic fibrosis lung. , 2010, International journal of medical microbiology : IJMM.

[9]  J. Pačes,et al.  Complete Genome Sequence of the Haloaromatic Acid-Degrading Bacterium Achromobacter xylosoxidans A8 , 2010, Journal of bacteriology.

[10]  S. Aoki,et al.  Bacterial contact-dependent delivery systems. , 2010, Annual review of genetics.

[11]  Thomas Bjarnsholt,et al.  Biofilms in chronic infections - a matter of opportunity - monospecies biofilms in multispecies infections. , 2010, FEMS immunology and medical microbiology.

[12]  M. Givskov,et al.  In vitro screens for quorum sensing inhibitors and in vivo confirmation of their effect , 2010, Nature Protocols.

[13]  M. Parsek,et al.  Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. , 2009, Microbiology.

[14]  A. Kharazmi,et al.  Polymorphonuclear leucocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis , 2009, Thorax.

[15]  G. Pier,et al.  Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes , 2009, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[16]  N. Høiby,et al.  Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients , 2009, Pediatric pulmonology.

[17]  Eduardo P C Rocha,et al.  The Genome of Burkholderia cenocepacia J2315, an Epidemic Pathogen of Cystic Fibrosis Patients , 2008, Journal of bacteriology.

[18]  M. Zucca,et al.  Achromobacter xylosoxidans respiratory tract infections in cystic fibrosis patients   , 2008, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[19]  M. Wolfgang,et al.  Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. , 2008, American journal of respiratory and critical care medicine.

[20]  Georgios S. Vernikos,et al.  The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants , 2008, Genome Biology.

[21]  P. Nordmann,et al.  Characterization of a Naturally Occurring Class D β-Lactamase from Achromobacter xylosoxidans , 2008, Antimicrobial Agents and Chemotherapy.

[22]  Rick L. Stevens,et al.  The RAST Server: Rapid Annotations using Subsystems Technology , 2008, BMC Genomics.

[23]  Andrew T. Revel,et al.  Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin , 2007, Proceedings of the National Academy of Sciences.

[24]  P. Williams,et al.  Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. , 2007, Microbiology.

[25]  N. Høiby Pseudomonas Aeruginosa Infection In Cystic Fibrosis , 2007 .

[26]  N. Høiby,et al.  Chronic infection with Achromobacter xylosoxidans in cystic fibrosis patients; a retrospective case control study. , 2006, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[27]  A. Péchinot,et al.  VEB-1 in Achromobacter xylosoxidans from Cystic Fibrosis Patient, France , 2006, Emerging infectious diseases.

[28]  S. Pournaras,et al.  VIM-2 metallo-β-lactamase in Achromobacter xylosoxidans in Europe , 2005, European Journal of Clinical Microbiology and Infectious Diseases.

[29]  N. Cianciotto Type II secretion: a protein secretion system for all seasons. , 2005, Trends in microbiology.

[30]  Kyudong Han,et al.  Imipenem-resistant Achromobacter xylosoxidans carrying blaVIM-2-containing class 1 integron. , 2005, Diagnostic microbiology and infectious disease.

[31]  Naryttza N. Diaz,et al.  The Subsystems Approach to Genome Annotation and its Use in the Project to Annotate 1000 Genomes , 2005, Nucleic acids research.

[32]  D. Thanassi,et al.  Mechanisms of Protein Export across the Bacterial Outer Membrane , 2005, Journal of bacteriology.

[33]  K. Poole Efflux-mediated antimicrobial resistance. , 2005, The Journal of antimicrobial chemotherapy.

[34]  M. Vaneechoutte,et al.  Shared Genotypes of Achromobacter xylosoxidans Strains Isolated from Patients at a Cystic Fibrosis Rehabilitation Center , 2005, Journal of Clinical Microbiology.

[35]  David S. Wishart,et al.  Circular genome visualization and exploration using CGView , 2005, Bioinform..

[36]  S. Molin,et al.  Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. , 2005, Microbiology.

[37]  K. Poole Aminoglycoside Resistance in Pseudomonas aeruginosa , 2005, Antimicrobial Agents and Chemotherapy.

[38]  K. Rolston,et al.  Bacteremia caused by Achromobacter and Alcaligenes species in 46 patients with cancer (1989–2003) , 2004, Cancer.

[39]  J. Preston,et al.  The pgaABCD Locus of Escherichia coli Promotes the Synthesis of a Polysaccharide Adhesin Required for Biofilm Formation , 2004, Journal of bacteriology.

[40]  A. Maniatis,et al.  Persistent Colonization of Nine Cystic Fibrosis Patients with an Achromobacter (Alcaligenes) xylosoxidans Clone , 2004, European Journal of Clinical Microbiology and Infectious Diseases.

[41]  P. Peña,et al.  Achromobacter xylosoxidans Bacteremia: A 10-Year Analysis of 54 Cases , 2003, European Journal of Clinical Microbiology and Infectious Diseases.

[42]  George M. Hilliard,et al.  Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. , 2002, Developmental cell.

[43]  D. Peckham,et al.  Alcaligenes infection in cystic fibrosis , 2002, Pediatric pulmonology.

[44]  Qijing Zhang,et al.  CmeABC Functions as a Multidrug Efflux System in Campylobacter jejuni , 2002, Antimicrobial Agents and Chemotherapy.

[45]  S. Iyobe,et al.  Detection of a Variant Metallo-β-Lactamase, IMP-10, from Two Unrelated Strains of Pseudomonas aeruginosa and an Alcaligenes xylosoxidans Strain , 2002, Antimicrobial Agents and Chemotherapy.

[46]  T. Coenye,et al.  Ribosomal DNA-Directed PCR for Identification of Achromobacter (Alcaligenes) xylosoxidans Recovered from Sputum Samples from Cystic Fibrosis Patients , 2002, Journal of Clinical Microbiology.

[47]  J. Costerton,et al.  Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms , 2002, Clinical Microbiology Reviews.

[48]  Richard C Boucher,et al.  Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. , 2002, The Journal of clinical investigation.

[49]  J. Costerton,et al.  Antibiotic resistance of bacteria in biofilms , 2001, The Lancet.

[50]  M. Kanehisa,et al.  Whole genome sequencing of meticillin-resistant Staphylococcus aureus , 2001, The Lancet.

[51]  M. Peel,et al.  Recurrent Achromobacter piechaudiiBacteremia in a Patient with Hematological Malignancy , 2001, Journal of Clinical Microbiology.

[52]  J. Costerton Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. , 2001, Trends in microbiology.

[53]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[54]  N. Høiby,et al.  Pseudomonas aeruginosa cross‐infection among patients with cystic fibrosis during a winter camp , 2000, Pediatric pulmonology.

[55]  H. Ceri,et al.  The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms , 1999, Journal of Clinical Microbiology.

[56]  J. Galán,et al.  Type III Secretion Machines: Bacterial Devices for Protein Delivery into Host Cells , 1999 .

[57]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[58]  J. Costerton,et al.  Introduction to biofilm. , 1999, International journal of antimicrobial agents.

[59]  R. Kolter,et al.  Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development , 1998, Molecular microbiology.

[60]  R. Kolter,et al.  Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili , 1998, Molecular microbiology.

[61]  D. Goldmann,et al.  The ica Locus of Staphylococcus epidermidis Encodes Production of the Capsular Polysaccharide/Adhesin , 1998, Infection and Immunity.

[62]  Roberto Kolter,et al.  Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis , 1998, Molecular microbiology.

[63]  H. Kentrup,et al.  Persistent airway colonization withAlcaligenes xylosoxidans in two brothers with cystic fibrosis , 1998, European Journal of Clinical Microbiology and Infectious Diseases.

[64]  P. Nordmann,et al.  OXA-18, a class D clavulanic acid-inhibited extended-spectrum beta-lactamase from Pseudomonas aeruginosa , 1997, Antimicrobial agents and chemotherapy.

[65]  F. E. Dodd,et al.  Structures of a blue-copper nitrite reductase and its substrate-bound complex. , 1997, Acta crystallographica. Section D, Biological crystallography.

[66]  G. Tournier,et al.  Molecular epidemiology ofBurkholderia cepacia, Stenotrophomonas maltophilia, andAlcaligenes xylosoxidans in a cystic fibrosis center , 1996, European Journal of Clinical Microbiology and Infectious Diseases.

[67]  W. Hillen,et al.  Tetracyclines: antibiotic action, uptake, and resistance mechanisms , 1996, Archives of Microbiology.

[68]  D. Mack,et al.  The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis , 1996, Journal of bacteriology.

[69]  D H Persing,et al.  Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing , 1995, Journal of clinical microbiology.

[70]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[71]  K. Qvortrup,et al.  Surface Morphology of the Endolymphatic Duct in the Rat a Scanning Electron Microscopy Study , 1995, The Annals of otology, rhinology, and laryngology.

[72]  Y. Liu,et al.  Characterization of a novel regulatory gene aepA that controls extracellular enzyme production in the phytopathogenic bacterium Erwinia carotovora subsp. carotovora. , 1993, Molecular plant-microbe interactions : MPMI.

[73]  J. Lucet,et al.  A beta-lactamase-overproducing strain of Alcaligenes denitrificans subsp. xylosoxydans isolated from a case of meningitis. , 1992, The Journal of antimicrobial chemotherapy.

[74]  J. Godden,et al.  The 2.3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. , 1991, Science.

[75]  V. Rosdahl,et al.  Genome fingerprinting as a typing method used on polyagglutinable Pseudomonas aeruginosa isolates from cystic fibrosis patients , 1991, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[76]  P. Courvalin,et al.  Nucleotide sequence of Acinetobacter baumannii aphA‐6 gene: evolutionary and functional implications of sequence homologies with nucleotide‐binding proteins, kinases and other aminoglycoside‐modifying enzymes , 1988, Molecular microbiology.

[77]  M. Peel,et al.  Alcaligenes piechaudii from chronic ear discharge , 1988, Journal of clinical microbiology.

[78]  J. Freney,et al.  In vitro susceptibility of Alcaligenes denitrificans subsp. xylosoxidans to 24 antimicrobial agents , 1988, Antimicrobial Agents and Chemotherapy.

[79]  C. Viscoli,et al.  Emerging microorganisms in cystic fibrosis. , 1987, Chemioterapia : international journal of the Mediterranean Society of Chemotherapy.

[80]  M. Thomassen,et al.  Occurrence and antimicrobial susceptibility of gram-negative nonfermentative bacilli in cystic fibrosis patients. , 1985, Diagnostic microbiology and infectious disease.

[81]  J. Williams,et al.  Mechanisms of beta-lactam resistance in British isolates of Pseudomonas aeruginosa. , 1984, Journal of medical microbiology.

[82]  C. Cobbs,et al.  Clinical and laboratory characteristics of Achromobacter xylosoxidans infection , 1980, Journal of clinical microbiology.

[83]  F. Pien,et al.  Achromobacter xylosoxidans isolates in Hawaii , 1978, Journal of clinical microbiology.

[84]  L. Jacobsen,et al.  Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance of Pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. , 1977, Scandinavian journal of respiratory diseases.

[85]  S. Sørensen,et al.  An invisible workforce: biofilms in the soil , 2012 .

[86]  G. Lear,et al.  Microbial biofilms : current research and applications , 2012 .

[87]  N. Høiby,et al.  Inflammation in Achromobacter xylosoxidans infected cystic fibrosis patients. , 2010, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[88]  M. Almuzara,et al.  In vitro susceptibility of Achromobacter spp. isolates: comparison of disk diffusion, Etest and agar dilution methods. , 2010, International journal of antimicrobial agents.

[89]  M. Vaneechoutte,et al.  Achromobacter xylosoxidans in cystic fibrosis: prevalence and clinical relevance. , 2007, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[90]  A. Stolz,et al.  Achromobacter, Alcaligenes and Related Genera , 2006 .

[91]  S. Pournaras,et al.  VIM-2 metallo-beta-lactamase in Achromobacter xylosoxidans in Europe. , 2005, European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology.

[92]  U. Meier,et al.  The reduction of nitrous oxide to dinitrogen by Escherichia coli , 2004, Archives of Microbiology.

[93]  G. O’Toole,et al.  Mechanisms of biofilm resistance to antimicrobial agents. , 2001, Trends in microbiology.

[94]  L. Saiman,et al.  Identification and Antimicrobial Susceptibility of Alcaligenes xylosoxidans Isolated from Patients with Cystic Fibrosis , 2001 .

[95]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO 1 , an opportunistic pathogen , 2000 .

[96]  B. Christensen,et al.  Molecular tools for study of biofilm physiology. , 1999, Methods in enzymology.

[97]  B. Bachmann,et al.  Derivations and genotypes of some mutant derivatives of Escherichia coli K12 , 1987 .

[98]  J. Costerton,et al.  Bacterial biofilms in nature and disease. , 1987, Annual review of microbiology.

[99]  E. Yabuuchi [Identification of Pseudomonas and related organisms]. , 1973, Rinsho byori. The Japanese journal of clinical pathology.