GRB 120422A/SN 2012bz: Bridging the gap between low- and high-luminosity gamma-ray bursts

Context. At low redshift, a handful of gamma-ray bursts (GRBs) have been discovered with luminosities that are substantially lower (Liso 10 49.5 erg s −1 ). It has been suggested that the properties of several low-luminosity (low-L) GRBs are due to shock break-out, as opposed to the emission from ultrarelativistic jets. This has led to much debate about how the populations are connected. Aims. The burst at redshift z = 0.283 from 2012 April 22 is one of the very few examples of intermediate-L GRBs with a γ-ray luminosity of Liso ∼ 10 49.6−49.9 erg s −1 that have been detected up to now. With the robust detection of its accompanying supernova SN 2012bz, it has the potential to answer important questions on the origin of low- and high-L GRBs and the GRB-SN connection. Methods. We carried out a spectroscopy campaign using medium- and low-resolution spectrographs with 6–10-m class telescopes, which covered a time span of 37.3 days, and a multi-wavelength imaging campaign, which ranged from radio to X-ray energies over a duration of ∼270 days. Furthermore, we used a tuneable filter that is centred at Hα to map star-formation in the host and the surrounding galaxies. We used these data to extract and model the properties of different radiation components and fitted the spectral energy distribution to extract the properties of the host galaxy. Results. Modelling the light curve and spectral energy distribution from the radio to the X-rays revealed that the blast wave expanded with an initial Lorentz factor of Γ0 ∼ 50, which is a low value in comparison to high-L GRBs, and that the afterglow had an exceptionally low peak luminosity density of <2 × 10 30 erg s −1 Hz −1 in the sub-mm. Because of the weak afterglow component, we were able to recover the signature of a shock break-out in an event that was not a genuine low-L GRB for the first time. At 1.4 hr after the burst, the stellar envelope had a blackbody temperature of kBT ∼ 16 eV and a radius of ∼7 × 10 13 cm (both in the observer frame). The accompanying SN 2012bz reached a peak luminosity of MV = −19.7 mag, which is 0.3 mag more luminous than SN 1998bw. The synthesised nickel mass of 0.58 M� , ejecta mass of 5.87 M� ,a nd kinetic energy of 4.10 × 10 52 erg were among the highest for GRB-SNe, which makes it the most luminous spectroscopically confirmed SN to date. Nebular emission lines at the GRB location were visible, which extend from the galaxy nucleus to the explosion site. The host and the explosion site had close-to-solar metallicity. The burst occurred in an isolated star-forming region with an SFR that is 1/10 of that in the galaxy’s nucleus. Conclusions. While the prompt γ-ray emission points to a high-L GRB, the weak afterglow and the low Γ0 were very atypical for such a burst. Moreover, the detection of the shock break-out signature is a new quality for high-L GRBs. So far, shock break-outs were exclusively detected for low-L GRBs, while GRB 120422A had an intermediate Liso of ∼10 49.6−49.9 erg s −1 . Therefore, we conclude that GRB 120422A was a transition object between low- and high-L GRBs, which supports the failed-jet model that connects low-L GRBs that are driven by shock break-outs and high-L GRBs that are powered by ultra-relativistic jets.

[1]  J. Cuby,et al.  Spatially-resolved dust properties of the GRB 980425 host galaxy , 2013, 1311.6466.

[2]  T. Sakamoto,et al.  GRB 130427A: A Nearby Ordinary Monster , 2013, Science.

[3]  J. Lyman,et al.  Bolometric corrections for optical light curves of core-collapse supernovae , 2013, 1311.1946.

[4]  J. Fynbo,et al.  HUBBLE SPACE TELESCOPE OBSERVATIONS OF THE AFTERGLOW, SUPERNOVA, AND HOST GALAXY ASSOCIATED WITH THE EXTREMELY BRIGHT GRB 130427A , 2013, 1307.5338.

[5]  D. A. Kann,et al.  THE AFTERGLOW OF GRB 130427A FROM 1 TO 1016 GHz , 2013, 1307.4401.

[6]  R. Kotak,et al.  Optical and near-infrared observations of SN 2011dh – The first 100 days , 2013, 1305.1851.

[7]  E. Pian,et al.  THE SIGNATURE OF THE CENTRAL ENGINE IN THE WEAKEST RELATIVISTIC EXPLOSIONS: GRB 100316D , 2013, 1308.1687.

[8]  Sergio Campana,et al.  GRB 081007 AND GRB 090424: THE SURROUNDING MEDIUM, OUTFLOWS, AND SUPERNOVAE , 2013, 1306.4585.

[9]  Z. Cano A new method for estimating the bolometric properties of Ibc supernovae , 2013, 1306.1488.

[10]  P. Jakobsson,et al.  DISCOVERY OF THE BROAD-LINED TYPE Ic SN 2013cq ASSOCIATED WITH THE VERY ENERGETIC GRB 130427A , 2013, 1305.6832.

[11]  D. Watson,et al.  THERMAL EMISSION IN THE EARLY X-RAY AFTERGLOWS OF GAMMA-RAY BURSTS: FOLLOWING THE PROMPT PHASE TO LATE TIMES , 2013, 1305.3165.

[12]  R. Kirshner,et al.  SN 2012au: A GOLDEN LINK BETWEEN SUPERLUMINOUS SUPERNOVAE AND THEIR LOWER-LUMINOSITY COUNTERPARTS , 2013, 1304.0095.

[13]  K. Grainge,et al.  Automated rapid follow-up of Swift gamma-ray burst alerts at 15 GHz with the AMI Large Array , 2012, 1211.3115.

[14]  J. Fynbo,et al.  A POPULATION OF MASSIVE, LUMINOUS GALAXIES HOSTING HEAVILY DUST-OBSCURED GAMMA-RAY BURSTS: IMPLICATIONS FOR THE USE OF GRBs AS TRACERS OF COSMIC STAR FORMATION , 2013, 1301.5903.

[15]  P. A. R. Ade,et al.  SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope , 2013, 1301.3650.

[16]  Douglas Scott,et al.  Scuba-2: Iterative map-making with the sub-millimetre user reduction facility , 2013, 1301.3652.

[17]  Per Friberg,et al.  Scuba-2: On-sky calibration using submillimetre standard sources , 2013, 1301.3773.

[18]  E. Goğuş,et al.  Gamma-ray bursts with extended emission observed with BATSE , 2012, 1210.2399.

[19]  A. de Ugarte Postigo,et al.  The distribution of equivalent widths in long GRB afterglow spectra , 2012, 1209.0891.

[20]  W. M. Wood-Vasey,et al.  THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.

[21]  E. Berger,et al.  HOST GALAXY PROPERTIES OF THE SUBLUMINOUS GRB 120422A/SN 2012bz , 2012, 1207.4200.

[22]  R. Starling,et al.  A search for thermal X-ray signatures in gamma-ray bursts - I. Swift bursts with optical supernovae , 2012, 1207.1444.

[23]  R. Starling,et al.  A search for thermal X‐ray signatures in gamma‐ray bursts – II. The Swift sample , 2012, 1207.1447.

[24]  C. Harris,et al.  Recreating Boundaries in Boundaryless Careers: The Career Transitions of Mompreneurs , 2012 .

[25]  L. A. Antonelli,et al.  The Optical SN 2012bz Associated with the Long GRB 120422A , 2012, 1206.5532.

[26]  N. Gehrels,et al.  GRB 120422A: A LOW-LUMINOSITY GAMMA-RAY BURST DRIVEN BY A CENTRAL ENGINE , 2012, 1206.0298.

[27]  Andrew J. Levan,et al.  THE OPTICALLY UNBIASED GAMMA-RAY BURST HOST (TOUGH) SURVEY. I. SURVEY DESIGN AND CATALOGS , 2012, 1205.3162.

[28]  J. Fynbo,et al.  The metal-enriched host of an energetic γ-ray burst at z ≈ 1.6 , 2012, 1203.1919.

[29]  D. Lazzati,et al.  UNIFYING THE ZOO OF JET-DRIVEN STELLAR EXPLOSIONS , 2011, 1111.0970.

[30]  D. A. Kann,et al.  The Fast Evolution of SN 2010bh associated with GRB 100316D , 2011, Proceedings of the International Astronomical Union.

[31]  E. Mazets,et al.  PANCHROMATIC OBSERVATIONS OF SN 2011dh POINT TO A COMPACT PROGENITOR STAR , 2011, 1107.1876.

[32]  N. Gehrels,et al.  Gamma-Ray Bursts , 2016, Stars and Stellar Processes.

[33]  Joshua S. Bloom,et al.  Gamma-Ray Bursts: The GRB–supernova connection , 2012 .

[34]  K. L. Page,et al.  The unusual γ-ray burst GRB 101225A from a helium star/neutron star merger at redshift 0.33 , 2011, Nature.

[35]  P. Jakobsson,et al.  THE HIGHLY ENERGETIC EXPANSION OF SN 2010bh ASSOCIATED WITH GRB 100316D , 2011, 1111.4527.

[36]  R. Manuputy,et al.  X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope , 2011, 1110.1944.

[37]  Hsiao-Wen Chen Near-infrared spectroscopy of gamma-ray burst host galaxies at z≳: insights into host galaxy dynamics and interpretations of afterglow absorption spectra , 2011, 1110.0487.

[38]  S. B. Pandey,et al.  GRB 090618: Detection of thermal X-ray emission from a bright gamma-ray burst , 2011 .

[39]  A. J. van der Horst,et al.  TEMPORAL DECONVOLUTION STUDY OF LONG AND SHORT GAMMA-RAY BURST LIGHT CURVES , 2011, 1109.4064.

[40]  C. Matzner,et al.  COASTING EXTERNAL SHOCK IN WIND MEDIUM: AN ORIGIN FOR THE X-RAY PLATEAU DECAY COMPONENT IN SWIFT GAMMA-RAY BURST AFTERGLOWS , 2011, 1109.3453.

[41]  P. Schady,et al.  The SEDs and host galaxies of the dustiest GRB afterglows , 2011, 1108.0674.

[42]  E. Rol,et al.  GRB070125 and the environments of spectral-line poor afterglow absorbers , 2011, 1107.3748.

[43]  David Polishook,et al.  SN 2011dh: DISCOVERY OF A TYPE IIb SUPERNOVA FROM A COMPACT PROGENITOR IN THE NEARBY GALAXY M51 , 2011, 1106.3551.

[44]  Physics,et al.  SN 2009jf: a slow-evolving stripped-envelope core-collapse supernova , 2011, 1106.3030.

[45]  E. Berger,et al.  THE SPECTROSCOPIC CLASSIFICATION AND EXPLOSION PROPERTIES OF SN 2009nz ASSOCIATED WITH GRB 091127 AT z = 0.490 , 2011, 1106.3073.

[46]  E. Nakar,et al.  RELATIVISTIC SHOCK BREAKOUTS—A VARIETY OF GAMMA-RAY FLARES: FROM LOW-LUMINOSITY GAMMA-RAY BURSTS TO TYPE Ia SUPERNOVAE , 2011, 1106.2556.

[47]  M. Modjaz Stellar Forensics with the Supernova-GRB Connection , 2011, 1105.5297.

[48]  S. Woosley Models for Gamma-Ray Burst Progenitors and Central Engines , 2011, 1105.4193.

[49]  N. Suntzeff,et al.  THE ULTIMATE LIGHT CURVE OF SN 1998bw/GRB 980425 , 2011, 1106.1695.

[50]  A. J. Levan,et al.  XRF 100316D/SN 2010bh AND THE NATURE OF GAMMA-RAY BURST SUPERNOVAE , 2011, 1104.5141.

[51]  Ryan Chornock,et al.  METALLICITY IN THE GRB 100316D/SN 2010bh HOST COMPLEX , 2011, 1104.2865.

[52]  Ranga-Ram Chary,et al.  Exploring The Galaxy Mass-Metallicity Relation at 3 , 2011, 1102.1022.

[53]  E. L. Robinson,et al.  SN 2008am: A SUPER-LUMINOUS TYPE IIn SUPERNOVA , 2011, 1101.3581.

[54]  Aniruddha R. Thakar,et al.  ERRATUM: “THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III” (2011, ApJS, 193, 29) , 2011 .

[55]  T. S. Koch,et al.  Photometric redshifts for gamma-ray burst afterglows from GROND and Swift/UVOT , 2010, 1011.1205.

[56]  L. A. Antonelli,et al.  THE AFTERGLOWS OF SWIFT-ERA GAMMA-RAY BURSTS. II. TYPE I GRB VERSUS TYPE II GRB OPTICAL AFTERGLOWS , 2008, 0804.1959.

[57]  K. M. Svensson,et al.  A tale of two GRB-SNe at a common redshift of z = 0.54 , 2010, 1012.1466.

[58]  J. X. Prochaska,et al.  A HIGH SIGNAL-TO-NOISE RATIO COMPOSITE SPECTRUM OF GAMMA-RAY BURST AFTERGLOWS , 2010, 1011.0734.

[59]  D. A. Kann,et al.  The circumburst density profile around GRB progenitors: a statistical study , 2010, 1010.4057.

[60]  I. Sokolov,et al.  Study of faint galaxies in the field of GRB021004 , 2010, 1010.3910.

[61]  L. Kewley,et al.  THE HOST GALAXIES OF GAMMA-RAY BURSTS. II. A MASS–METALLICITY RELATION FOR LONG-DURATION GAMMA-RAY BURST HOST GALAXIES , 2010, 1006.3560.

[62]  S. B. Cenko,et al.  DISCOVERY OF SN 2009nz ASSOCIATED WITH GRB 091127 , 2010, 1005.4961.

[63]  T. Sakamoto,et al.  Discovery of the nearby long, soft GRB 100316D with an associated supernova , 2010, 1004.2919.

[64]  Robert P. Kirshner,et al.  Spectroscopic Discovery of the Broad-Lined Type Ic Supernova 2010bh Associated with the Low-Redshift GRB 100316D , 2010, 1004.2262.

[65]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.

[66]  F. Hammer,et al.  The Wolf-Rayet features and mass-metallicity relation of long-duration gamma-ray burst host galaxies , 2010, 1001.2476.

[67]  Andrew S. Fruchter,et al.  A HIGH-METALLICITY HOST ENVIRONMENT FOR THE LONG-DURATION GRB 020819 , 2010, 1001.0970.

[68]  S. Barthelmy,et al.  A relativistic type Ibc supernova without a detected γ-ray burst , 2009, Nature.

[69]  N. Gehrels,et al.  LATE-TIME DETECTIONS OF THE X-RAY AFTERGLOW OF GRB 060729 WITH CHANDRA—THE LATEST DETECTIONS EVER OF AN X-RAY AFTERGLOW , 2009, 0903.1258.

[70]  Evert Rol,et al.  LATE-TIME OBSERVATIONS OF GRB 080319B: JET BREAK, HOST GALAXY, AND ACCOMPANYING SUPERNOVA , 2008, 0812.1217.

[71]  Bing Zhang,et al.  CONSTRAINING GAMMA-RAY BURST INITIAL LORENTZ FACTOR WITH THE AFTERGLOW ONSET FEATURE AND DISCOVERY OF A TIGHT Γ0–Eγ,iso CORRELATION , 2009, 0912.4800.

[72]  D. Wanderman,et al.  The luminosity function and the rate of Swift's Gamma Ray Bursts , 2009, 0912.0709.

[73]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[74]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[75]  Bing Zhang,et al.  DISCERNING THE PHYSICAL ORIGINS OF COSMOLOGICAL GAMMA-RAY BURSTS BASED ON MULTIPLE OBSERVATIONAL CRITERIA: THE CASES OF z = 6.7 GRB 080913, z = 8.2 GRB 090423, AND SOME SHORT/HARD GRBs , 2009, 0902.2419.

[76]  Warren R. Brown,et al.  FROM SHOCK BREAKOUT TO PEAK AND BEYOND: EXTENSIVE PANCHROMATIC OBSERVATIONS OF THE TYPE Ib SUPERNOVA 2008D ASSOCIATED WITH SWIFT X-RAY TRANSIENT 080109 , 2008, 0805.2201.

[77]  Martin M. Roth,et al.  GRB 060605: multi-wavelength analysis of the first GRB observed using integral field spectroscopy , 2008, 0804.2457.

[78]  S. Savaglio,et al.  THE GALAXY POPULATION HOSTING GAMMA-RAY BURSTS , 2008, 0803.2718.

[79]  T. Sakamoto,et al.  JET BREAKS AND ENERGETICS OF Swift GAMMA-RAY BURST X-RAY AFTERGLOWS , 2008, 0812.4780.

[80]  J. P. Osborne,et al.  Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs , 2008, 0812.3662.

[81]  G. Sala,et al.  A STRONG OPTICAL FLARE BEFORE THE RISING AFTERGLOW OF GRB 080129 , 2008, 0811.4291.

[82]  D. Malesani,et al.  Probing the complex environments of GRB host galaxies and intervening systems: high resolution spectroscopy of GRB050922C , 2008, 0811.0989.

[83]  P. M. Vreeswijk,et al.  IFU observations of the GRB 980425/SN 1998bw host galaxy : emission line ratios in GRB regions , 2008, 0807.3554.

[84]  S. Savaglio,et al.  The 2175 Å Dust Feature in a Gamma-Ray Burst Afterglow at Redshift 2.45 , 2008, 0805.2824.

[85]  S. B. Cenko,et al.  GRB 071003: Broadband Follow-up Observations of a Very Bright Gamma-Ray Burst in a Galactic Halo , 2008, 0805.2394.

[86]  N. Langer,et al.  Gamma-ray bursts from tidally spun-up Wolf-Rayet stars? , 2008, 0804.0014.

[87]  N. Gehrels,et al.  The Spectral Lag of GRB 060505: A Likely Member of the Long-Duration Class , 2008, 0803.1919.

[88]  E. Ofek,et al.  An extremely luminous X-ray outburst at the birth of a supernova , 2008, Nature.

[89]  M. Honsberg,et al.  GROND—a 7-Channel Imager , 2008, 0801.4801.

[90]  Bing Zhang,et al.  Low-luminosity gamma-ray bursts as a distinct GRB population: a firmer case from multiple criteria constraints , 2008, 0801.4751.

[91]  D. A. Kann,et al.  Spatially Resolved Properties of the GRB 060505 Host: Implications for the Nature of the Progenitor , 2007, astro-ph/0703407.

[92]  J. Greiner,et al.  GROND commissioned at the 2.2-m MPI telescope on La Silla , 2007 .

[93]  E. O. Ofek,et al.  The Broad-lined Type Ic SN 2003jd , 2007, 0710.5173.

[94]  M. J. Page,et al.  Photometric calibration of the Swift ultraviolet/optical telescope , 2007, 0708.2259.

[95]  J. P. Osborne,et al.  An online repository of Swift/XRT light curves of Γ-ray bursts , 2007, 0704.0128.

[96]  S. E. Persson,et al.  GRB 060505: A Possible Short-Duration Gamma-Ray Burst in a Star-forming Region at a Redshift of 0.09 , 2007, astro-ph/0703192.

[97]  J. Fynbo,et al.  The nature of the dwarf starforming galaxy associated with GRB 060218/SN 2006aj , 2007, astro-ph/0701034.

[98]  Massimo Della Valle,et al.  On the Rates of Gamma-Ray Bursts and Type Ib/c Supernovae , 2006, astro-ph/0612194.

[99]  E. Rol,et al.  Prompt and Afterglow Emission Properties of Gamma-Ray Bursts with Spectroscopically Identified Supernovae , 2006, astro-ph/0607110.

[100]  Bing Zhang,et al.  Low-Luminosity Gamma-Ray Bursts as a Unique Population: Luminosity Function, Local Rate, and Beaming Factor , 2006, astro-ph/0605200.

[101]  E. O. Ofek,et al.  A novel explosive process is required for the γ-ray burst GRB 060614 , 2006, Nature.

[102]  P. Brown,et al.  The association of GRB 060218 with a supernova and the evolution of the shock wave , 2006, Nature.

[103]  L. A. Antonelli,et al.  An enigmatic long-lasting γ-ray burst not accompanied by a bright supernova , 2006, Nature.

[104]  L. Kewley,et al.  No supernovae associated with two long-duration γ-ray bursts , 2006, Nature.

[105]  Peter Garnavich,et al.  Infrared and Optical Observations of GRB 030115 and its Extremely Red Host Galaxy: Implications for Dark Bursts , 2006, astro-ph/0608166.

[106]  G. García-Segura,et al.  Forming a constant density medium close to long gamma-ray bursts , 2006, astro-ph/0605698.

[107]  P. B. Cameron,et al.  Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions , 2006, Nature.

[108]  S. Woosley,et al.  The Supernova Gamma-Ray Burst Connection , 2006, astro-ph/0609142.

[109]  L. A. Antonelli,et al.  Hypernova Signatures in the Late Rebrightening of GRB 050525A , 2006, astro-ph/0604109.

[110]  D. A. Kann,et al.  An optical supernova associated with the X-ray flash XRF 060218 , 2006, Nature.

[111]  C. Conselice,et al.  Long γ-ray bursts and core-collapse supernovae have different environments , 2006, Nature.

[112]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[113]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[114]  E. Floc’h,et al.  Probing Cosmic Star Formation Using Long Gamma-Ray Bursts: New Constraints from the Spitzer Space Telescope* , 2006, astro-ph/0601251.

[115]  J. Fynbo,et al.  The galaxies in the field of the nearby GRB 980425/SN 1998bw , 2005, astro-ph/0510813.

[116]  N. Gehrels,et al.  Evidence for a Canonical Gamma-Ray Burst Afterglow Light Curve in the Swift XRT Data , 2005, astro-ph/0508332.

[117]  Italy.,et al.  X-ray continuum properties of GRB afterglows observed by XMM-Newton and Chandra , 2005, astro-ph/0507710.

[118]  L. A. Antonelli,et al.  The BeppoSAX catalog of GRB X-ray afterglow observations , 2005, astro-ph/0507708.

[119]  D. A. Kann,et al.  Gamma-Ray Burst Afterglow Light Curves in the Pre-Swift Era: A Statistical Study , 2005, astro-ph/0509299.

[120]  E. Berger,et al.  Late-Time Radio Observations of 68 Type Ibc Supernovae: Strong Constraints on Off-Axis Gamma-Ray Bursts , 2005, astro-ph/0507147.

[121]  E. H. Gudmundsson,et al.  Ly+ and ultraviolet emission from high-redshift gamma-ray burst hosts: to what extent do gamma-ray bursts trace star formation? , 2005, astro-ph/0505542.

[122]  B. McLeod,et al.  Deep Photometry of GRB 041006 Afterglow: Hypernova Bump at Redshift z = 0.716 , 2005, astro-ph/0502319.

[123]  L. A. Antonelli,et al.  SN 2003lw and GRB 031203: A Bright Supernova for a Faint Gamma-Ray Burst , 2004, astro-ph/0405449.

[124]  Scott D. Barthelmy,et al.  The Burst Alert Telescope (BAT) on the SWIFT Midex Mission , 2004, SPIE Optics + Photonics.

[125]  I. Hook,et al.  The Gemini–North Multi‐Object Spectrograph: Performance in Imaging, Long‐Slit, and Multi‐Object Spectroscopic Modes , 2004 .

[126]  C. Dermer Curvature Effects in Gamma-Ray Burst Colliding Shells , 2004, astro-ph/0403508.

[127]  L. Kewley,et al.  [O II] as a Star Formation Rate Indicator , 2004, astro-ph/0401172.

[128]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[129]  S. Klose,et al.  A Systematic Analysis of Supernova Light in Gamma-Ray Burst Afterglows , 2003, astro-ph/0311610.

[130]  Bing Zhang,et al.  Gamma-Ray Bursts: Progress, Problems & Prospects , 2003, astro-ph/0311321.

[131]  Peter W. A. Roming,et al.  The Swift Ultra-Violet/Optical Telescope , 2002, SPIE Optics + Photonics.

[132]  D. Watson,et al.  The Swift X-Ray Telescope , 1999, SPIE Optics + Photonics.

[133]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[134]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[135]  D. Bersier,et al.  Photometry and Spectroscopy of GRB 030329 and Its Associated Supernova 2003dh: The First Two Months , 2003, astro-ph/0307435.

[136]  A. S. Fruchter,et al.  On the Lyalpha emission from gamma-ray burst host galaxies: Evidence for low metallicities , 2003, astro-ph/0306403.

[137]  K. Pedersen,et al.  A very energetic supernova associated with the γ-ray burst of 29 March 2003 , 2003, Nature.

[138]  Y. Yoshii,et al.  A Two-Component Model for the Light Curves of Hypernovae , 2003, astro-ph/0305182.

[139]  J. Brinkmann,et al.  The Host Galaxies of AGN , 2003, astro-ph/0304239.

[140]  Warren R. Brown,et al.  Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329 , 2003, astro-ph/0304173.

[141]  J. Munn,et al.  The USNO-B Catalog , 2002, astro-ph/0210694.

[142]  D. Eisenstein,et al.  The K correction , 2002, astro-ph/0210394.

[143]  M. Hamuy,et al.  Type II Supernovae as Standardized Candles , 2002, astro-ph/0201279.

[144]  S. Djorgovski,et al.  The Observed Offset Distribution of Gamma-Ray Bursts from Their Host Galaxies: A Robust Clue to the Nature of the Progenitors , 2000, astro-ph/0010176.

[145]  L. Kewley,et al.  Theoretical Modeling of Starburst Galaxies , 2001, astro-ph/0106324.

[146]  Filippo Frontera,et al.  Accepted for publication in the Astrophysical Journal 2001, v. 555 Preprint typeset using L ATEX style emulateapj v. 14/09/00 THE METAMORPHOSIS OF SN 1998BW ‡ , 1999 .

[147]  A. Panaitescu,et al.  Afterglow Emission from Naked Gamma-Ray Bursts , 2000, astro-ph/0006317.

[148]  F. Allard,et al.  Evolutionary Models for Very Low-Mass Stars and Brown Dwarfs with Dusty Atmospheres , 2000, astro-ph/0005557.

[149]  A. Kumar,et al.  Analytic Light Curves of Gamma-Ray Burst Afterglows: Homogeneous versus Wind External Media , 2000, astro-ph/0003246.

[150]  Zhi-Yun Li,et al.  Wind Interaction Models for Gamma-Ray Burst Afterglows: The Case for Two Types of Progenitors , 1999, astro-ph/9908272.

[151]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[152]  L. Moscardini,et al.  Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North , 1999, astro-ph/9902290.

[153]  Tsvi Piran,et al.  Predictions for the Very Early Afterglow and the Optical Flash , 1999, astro-ph/9901338.

[154]  D. Frail,et al.  Radio emission from the unusual supernova 1998bw and its association with the γ-ray burst of 25 April 1998 , 1998, Nature.

[155]  M. C. Begam,et al.  An unusual supernova in the error box of the γ-ray burst of 25 April 1998 , 1998, Nature.

[156]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[157]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[158]  Chris L. Fryer,et al.  Helium Star/Black Hole Mergers: A New Gamma-Ray Burst Model , 1998, astro-ph/9804167.

[159]  T. Piran,et al.  Spectra and Light Curves of Gamma-Ray Burst Afterglows , 1997, astro-ph/9712005.

[160]  S. Woosley,et al.  A Comparative Modeling of Supernova 1993J , 1997 .

[161]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[162]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[163]  Masaru Matsuoka,et al.  All-Sky X-Ray Observations in the Next Decade , 1997 .

[164]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[165]  Chien Y. Peng,et al.  UBVRI Photometry of the Type IC SN 1994I in M51 , 1996 .

[166]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[167]  Bruno Leibundgut,et al.  UBVRI Photometry of SN 1993J in M81: The First 120 Days , 1994 .

[168]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[169]  A. Burrows,et al.  Shock breakout in SN 1987A , 1992 .

[170]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[171]  W. Arnett Type I supernovae. I. Analytic solutions for the early part of the light curve , 1982 .

[172]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[173]  R. Kron Photometry of a complete sample of faint galaxies. , 1980 .

[174]  S. Colgate,et al.  EARLY SUPERNOVA LUMINOSITY. , 1969 .