On the solution of generalized time-fractional telegraphic equation

[1]  ANALYTICAL SOLUTION OF GENERALIZED DIFFUSION-LIKE EQUATION OF FRACTIONAL ORDER , 2022, Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan.

[2]  M. Khater,et al.  Analytical and hybrid numerical simulations for the (2+1)-dimensional Heisenberg ferromagnetic spin chain , 2022, Results in Physics.

[3]  P. Goswami,et al.  Solution of Generalized Fractional Burgers Equation with a Nonlinear Term , 2022, International Journal of Applied and Computational Mathematics.

[4]  M. Khater Two-component plasma and electron trapping’s influence on the potential of a solitary electrostatic wave with the dust-ion-acoustic speed , 2022, Journal of Ocean Engineering and Science.

[5]  M. Khater,et al.  Diverse Soliton wave solutions of for the nonlinear potential Kadomtsev–Petviashvili and Calogero–Degasperis equations , 2022, Results in Physics.

[6]  M. Khan,et al.  A robust study on 2019-nCOV outbreaks through non-singular derivative , 2021, The European Physical Journal Plus.

[7]  B. Samet,et al.  A study on fractional host–parasitoid population dynamical model to describe insect species , 2020, Numerical Methods for Partial Differential Equations.

[8]  B. Samet,et al.  A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials , 2020, Numerical Methods for Partial Differential Equations.

[9]  A. Kılıçman,et al.  On the solution of (n+1)-dimensional fractional M-Burgers equation , 2020 .

[10]  H. K. Mishra,et al.  Homotopy Perturbation Method of Delay Differential Equation Using He’s Polynomial with Laplace Transform , 2020, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences.

[11]  Shruti A. Dubey,et al.  A local meshless method to approximate the time-fractional telegraph equation , 2020, Engineering with Computers.

[12]  Dan Tian,et al.  Using reproducing kernel for solving a class of time-fractional telegraph equation with initial value conditions , 2018, Int. J. Comput. Math..

[13]  M. M. Rodrigues,et al.  First and Second Fundamental Solutions of the Time-Fractional Telegraph Equation with Laplace or Dirac Operators , 2018 .

[14]  S. Yalçınbaş,et al.  A New Algorithm for the Numerical Solution of Telegraph Equations by Using Fibonacci Polynomials , 2016 .

[15]  Abdon Atangana,et al.  On the stability and convergence of the time-fractional variable order telegraph equation , 2015, J. Comput. Phys..

[16]  Sunil Kumar,et al.  A new analytical modelling for fractional telegraph equation via Laplace transform , 2014 .

[17]  Changpin Li,et al.  Fractional difference/finite element approximations for the time-space fractional telegraph equation , 2012, Appl. Math. Comput..

[18]  Feng-Hui Huang,et al.  Analytical Solution for the Time-Fractional Telegraph Equation , 2009, J. Appl. Math..

[19]  E. C. Oliveira,et al.  Differentiation to fractional orders and the fractional telegraph equation , 2008 .

[20]  Abdul-Majid Wazwaz,et al.  The variational iteration method: A powerful scheme for handling linear and nonlinear diffusion equations , 2007, Comput. Math. Appl..

[21]  Shaher Momani,et al.  Analytic and approximate solutions of the space- and time-fractional telegraph equations , 2005, Appl. Math. Comput..

[22]  H. Fujita The Exact Pattern of a Concentration-Dependent Diffusion in a semi-infinite Medium, Part III , 1954 .

[23]  H. Fujita The Exact Pattern of a Concentration-Dependent Diffusion in a Semi-infinite Medium, Part II , 1952 .

[24]  H. Fujita The Exact Pattern of a Concentration-Dependent Diffusion in a Semi-infinite Medium, Part I , 1952 .

[25]  D. Baleanu,et al.  Laplace homotopy perturbation method for Burgers equation with space- and time-fractional order , 2016 .

[26]  V. Chaurasia,et al.  ANALYTICAL SOLUTION FOR THE GENERALIZED TIME-FRACTIONAL TELEGRAPH EQUATION , 2013 .