Analysis of an optimal control problem for the tridomain model in cardiac electrophysiology

In the present paper, an optimal control problem constrained by the tridomain equations in electrocardiology is investigated. The state equations consisting in a coupled reaction-diffusion system modelling the propagation of the intracellular and extracellular electrical potentials, and ionic currents, are extended to further consider the effect of an external bathing medium. The existence and uniqueness of solution for the tridomain problem and the related control problem is assessed, and the primal and dual problems are discretized using a finite volume method which is proved to converge to the corresponding weak solution. In order to illustrate the control of the electrophysiological dynamics, we present some preliminary numerical experiments using an efficient implementation of the proposed scheme.

[1]  Simona Sanfelici Convergence of the Galerkin approximation of a degenerate evolution problem in electrocardiology , 2002 .

[2]  J. NAGUMOt,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 2006 .

[3]  Y. Bourgault,et al.  Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology , 2009 .

[4]  K. Karlsen,et al.  Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations , 2009, 0901.0816.

[5]  Stefan Volkwein,et al.  Nonlinear conjugate gradient methods for the optimal control of laser surface hardening , 2004, Optim. Methods Softw..

[6]  Giovanni Solari,et al.  Double Proper Orthogonal Decomposition for Representing and Simulating Turbulence Fields , 2005 .

[7]  Andrew D. McCulloch,et al.  Computational Methods for Cardiac Electrophysiology , 2004 .

[8]  James P. Keener,et al.  Mathematical physiology , 1998 .

[9]  K. Karlsen,et al.  A gradient reconstruction formula for finite volume schemes and discrete duality , 2008 .

[10]  K. Kunisch,et al.  Optimal control of the bidomain system (II): uniqueness and regularity theorems for weak solutions , 2013 .

[11]  Joakim Sundnes,et al.  Computing the electrical activity in the heart , 2006 .

[12]  Rodrigo Weber dos Santos,et al.  On the Influence of a Volume Conductor on the Orientation of Currents in a Thin Cardiac Tissue , 2003, FIMH.

[13]  Henggui Zhang,et al.  Mechanisms of defibrillation by standing waves in the bidomain ventricular tissue with voltage applied in an external bath , 2009 .

[14]  Karl Kunisch,et al.  Second Order Methods for Optimal Control of Time-Dependent Fluid Flow , 2001, SIAM J. Control. Optim..

[15]  K. Kunisch,et al.  Higher order optimization and adaptive numerical solution for optimal control of monodomain equations in cardiac electrophysiology , 2011 .

[16]  Kenneth H. Karlsen,et al.  Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue , 2006, Networks Heterog. Media.

[17]  Giuseppe Savaré,et al.  Degenerate Evolution Systems Modeling the Cardiac Electric Field at Micro- and Macroscopic Level , 2002 .

[18]  W. Hager,et al.  A SURVEY OF NONLINEAR CONJUGATE GRADIENT METHODS , 2005 .

[19]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[20]  The prevalence of treatable left ventricular systolic dysfunction in patients who present with noncardiac vascular episodes: a case-control study. , 2002, Journal of the American College of Cardiology.

[21]  K. Kunisch,et al.  Optimal control of the bidomain system (I): The monodomain approximation with the Rogers–McCulloch model , 2012 .

[22]  A. Quarteroni,et al.  An active strain electromechanical model for cardiac tissue , 2012, International journal for numerical methods in biomedical engineering.

[23]  Karl Kunisch,et al.  Numerical solution for optimal control of the reaction-diffusion equations in cardiac electrophysiology , 2011, Comput. Optim. Appl..

[24]  V. Schulz,et al.  Multigrid optimization in applications , 2000 .

[25]  Enrique Zuazua,et al.  Controllability and Observability of Partial Differential Equations: Some Results and Open Problems , 2007 .

[26]  Yves Coudière,et al.  2D/3D Discrete Duality Finite Volume (DDFV) scheme for anisotropic- heterogeneous elliptic equations, application to the electrocardiogram simulation. , 2008 .

[27]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[28]  K. Karlsen,et al.  Convergence of a finite volume scheme for the bidomain model of cardiac tissue , 2009 .

[29]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[30]  F. Hermeline Approximation of 2-D and 3-D diffusion operators with variable full tensor coefficients on arbitrary meshes , 2007 .

[31]  Alessandro Veneziani,et al.  An a posteriori error estimator for model adaptivity in electrocardiology , 2011 .

[32]  B. Haasdonk,et al.  REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .

[33]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[34]  Mostafa Bendahmane,et al.  A multiresolution space‐time adaptive scheme for the bidomain model in electrocardiology , 2008, 0807.0432.

[35]  Ricardo Ruiz-Baier,et al.  Analysis of a finite volume method for a cross-diffusion model in population dynamics , 2011 .

[36]  Raimund Bürger,et al.  A finite volume scheme for cardiac propagation in media with isotropic conductivities , 2010, Math. Comput. Simul..

[37]  Marco Veneroni,et al.  Reaction–diffusion systems for the macroscopic bidomain model of the cardiac electric field , 2009 .

[38]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.