Geometric and Illumination Invariants for Object Recognition

We propose invariant formulations that can potentially be combined into a single system. In particular, we describe a framework for computing invariant features which are insensitive to rigid motion, affine transform, changes of parameterization and scene illumination, perspective transform, and view point change. This is unlike most current research on image invariants which concentrates on either geometric or illumination invariants exclusively. The formulations are widely applicable to many popular basis representations, such as wavelets, short-time Fourier analysis, and splines. Exploiting formulations that examine information about shape and color at different resolution levels, the new approach is neither strictly global nor local. It enables a quasi-localized, hierarchical shape analysis which is rarely found in other known invariant techniques, such as global invariants. Furthermore, it does not require estimating high-order derivatives in computing invariants (unlike local invariants), whence is more robust. We provide results of numerous experiments on both synthetic and real data to demonstrate the validity and flexibility of the proposed framework.

[1]  Glenn Healey,et al.  Use of invariants for recognition of three-dimensional color textures , 1994 .

[2]  Wen-Rong Wu,et al.  Rotation and gray-scale transform-invariant texture classification using spiral resampling, subband decomposition, and hidden Markov model , 1996, IEEE Trans. Image Process..

[3]  Yehezkel Lamdan,et al.  Affine invariant model-based object recognition , 1990, IEEE Trans. Robotics Autom..

[4]  Dmitry B. Goldgof,et al.  The Scale Space Aspect Graph , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Wolfgang Böhm,et al.  A survey of curve and surface methods in CAGD , 1984, Comput. Aided Geom. Des..

[6]  Paulo J. G. Lisboa,et al.  Translation, rotation, and scale invariant pattern recognition by high-order neural networks and moment classifiers , 1992, IEEE Trans. Neural Networks.

[7]  L. Maloney Evaluation of linear models of surface spectral reflectance with small numbers of parameters. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[8]  Sudhir P. Mudur,et al.  Mathematical Elements for Computer Graphics , 1985, Advances in Computer Graphics.

[9]  Nagaraj Nandhakumar,et al.  Thermophysical Algebraic Invariants from Infrared Imagery for Object Recognition , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Glenn Healey,et al.  The Illumination-Invariant Matching of Deterministic Local Structure in Color Images , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Kevin W. Bowyer,et al.  Computing the Perspective Projection Aspect Graph of Solids of Revolution , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[13]  Edward H. Adelson,et al.  Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.

[14]  Ph. Tchamitchian,et al.  Wavelets: Time-Frequency Methods and Phase Space , 1992 .

[15]  Glenn Healey,et al.  The Illumination-Invariant Recognition of 3D Objects Using Local Color Invariants , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Guo Lei,et al.  Recognition of planar objects in 3-D space from single perspective views using cross ratio , 1990, IEEE Trans. Robotics Autom..

[17]  R. Darnell Translation , 1873, The Indian medical gazette.

[18]  G. Farin Algorithms for rational Bézier curves , 1983 .

[19]  Stéphane Mallat,et al.  Multifrequency channel decompositions of images and wavelet models , 1989, IEEE Trans. Acoust. Speech Signal Process..

[20]  Glenn Healey,et al.  Illumination and geometry invariant recognition of texture in color images , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  M.G. Bellanger,et al.  Digital processing of speech signals , 1980, Proceedings of the IEEE.

[22]  Steven K. Feiner,et al.  Computer graphics: principles and practice (2nd ed.) , 1990 .

[23]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Wesley E. Snyder,et al.  Application of Affine-Invariant Fourier Descriptors to Recognition of 3-D Objects , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Wayne Tiller,et al.  Rational B-Splines for Curve and Surface Representation , 1983, IEEE Computer Graphics and Applications.

[26]  G. Healey,et al.  Illumination-invariant recognition of texture in color images , 1995 .

[27]  G. Healey,et al.  Global color constancy: recognition of objects by use of illumination-invariant properties of color distributions , 1994 .

[28]  G. Healey,et al.  Using physics-based invariant representations for the recognition of regions in multispectral satellite images , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  Wageeh Boles,et al.  Wavelet-based affine invariant representation: a tool for recognizing planar objects in 3D space , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Glenn Healey,et al.  Using a spectral reflectance model for the illumination-invariant recognition of local image structure , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[31]  Miroslaw Pawlak,et al.  On Image Analysis by Moments , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  L. Piegl,et al.  Curve and surface constructions using rational B-splines , 1987 .

[33]  Andrew Zisserman,et al.  Geometric invariance in computer vision , 1992 .

[34]  Andrew Zisserman,et al.  Applications of Invariance in Computer Vision , 1993, Lecture Notes in Computer Science.

[35]  Azriel Rosenfeld,et al.  3-D Shape Recovery Using Distributed Aspect Matching , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Stéphane Mallat,et al.  Zero-crossings of a wavelet transform , 1991, IEEE Trans. Inf. Theory.

[37]  L. Maloney,et al.  Color constancy: a method for recovering surface spectral reflectance. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[38]  Thomas Ertl,et al.  Computer Graphics - Principles and Practice, 3rd Edition , 2014 .

[39]  Wageeh Boles,et al.  Recognition of 2D object contours using the wavelet transform zero-crossing representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Emanuele Trucco,et al.  Geometric Invariance in Computer Vision , 1995 .

[41]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[42]  Wen-Rong Wu,et al.  Correction To "rotation And Gray-scale Transform-invariant Texture Classification Using Spiral Resampling, Subband Decomposition, And Hidden Markov Model" , 1996, IEEE Trans. Image Process..

[43]  Thomas H. Reiss,et al.  Recognizing Planar Objects Using Invariant Image Features , 1993, Lecture Notes in Computer Science.