On weak and strong normalisations

With the help of continuations, we first construct a transformation T which transforms every Aterm t into a AJ-term T(t). Then we apply the conservation theorem in A-calculus to show that t is strongly normalisable if T(t) has a /J-normal form. In this way, we succeed in establishing the equivalence between weak and strong normalisation theorems in various typed A-calculi. This not only enhances the understanding between weak and strong normalisations, but also presents an elegant approach to proving strong normalisation theorems via the notion of weak normalisations.

[1]  Zohar Manna,et al.  Logics of Programs , 1981, Lecture Notes in Computer Science.

[2]  J. Girard,et al.  Proofs and types , 1989 .

[3]  Mark Lillibridge,et al.  Polymorphic type assignment and CPS conversion , 1993, LISP Symb. Comput..

[4]  Peter B. Andrews Resolution in type theory , 1971, Journal of Symbolic Logic.

[5]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[6]  Assaf J. Kfoury,et al.  New notions of reduction and non-semantic proofs of strong /spl beta/-normalization in typed /spl lambda/-calculi , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[7]  J. Roger Hindley,et al.  To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .

[8]  Jan Willem Klop,et al.  Combinatory reduction systems , 1980 .

[9]  Gordon D. Plotkin,et al.  Call-by-Name, Call-by-Value and the lambda-Calculus , 1975, Theor. Comput. Sci..

[10]  J. Girard Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .

[11]  Mark Lillibridge,et al.  Explicit polymorphism and CPS conversion , 1993, POPL '93.

[12]  P. Martin-Löf Hauptsatz for the Theory of Species , 1971 .

[13]  Robert Pieter Nederpelt Lazarom Strong normalization in a typed lambda calculus with lambda structured types , 1973 .

[14]  A. Church The calculi of lambda-conversion , 1941 .

[15]  John C. Reynolds Definitional Interpreters for Higher-Order Programming Languages , 1998, High. Order Symb. Comput..

[16]  Albert R. Meyer,et al.  Continuation Semantics in Typed Lambda-Calculi (Summary) , 1985, Logic of Programs.

[17]  Philippe de Groote,et al.  The Conservation Theorem revisited , 1993, TLCA.

[18]  Timothy G. Griffin,et al.  A formulae-as-type notion of control , 1989, POPL '90.

[19]  John C. Reynolds,et al.  Definitional Interpreters for Higher-Order Programming Languages , 1972, ACM '72.

[20]  D. Prawitz Ideas and Results in Proof Theory , 1971 .